Laser & Optoelectronics Progress, Volume. 59, Issue 15, 1516023(2022)

Review of Research on Optical Fiber Fluorescence Temperature Probes

Jianwei Huang and Ting Liu*
Author Affiliations
  • College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian , China
  • show less
    Figures & Tables(9)
    Fluorescence signal processing methods. (a) Fluorescence intensity method[18]; (b) fluorescence intensity ratio method[19]; (c) fluorescence power ratio method[20]; (d) fluorescence lifetime method[21]; (e) fluorescence emission peak wavelength shift method[22]; (f) fluorescence signal-to-noise ratio method [23]; (g) efficiency signal conversion method[24]; (h) self-referenced phase shift method [25]
    Sensing probes prepared by doping methods. (a) Welding method [26]; (b) solution doping method[27]; (c) laser heating pedestal method [28]; (d) codeposition method [29]; (e) electrospinning method [30]; (f) wet spinning method [31]
    Preparation of sensing probes by chemical modification and physical deposition methods. (a) Chemical modification method[88]; (b) Physical deposition method[90]
    Encapsulation methods for preparing sensing probes. (a) Encapsulated with epoxy resin[93]; (b) encapsulated with nanocrystalline particles[94]; (c) encapsulated with phosphor[95]; (d) combined package with Fabry-Perot interference cavity[96]
    Special optical fiber filling methods to prepare sensing probes. (a) Filled with quantum dots[97]; (b) filled with R6G film[98]; (c) embedded with glass microspheres[99]; (d) filled with fluorescein[100]
    • Table 1. Comparison of fluorescence temperature measurement methods

      View table

      Table 1. Comparison of fluorescence temperature measurement methods

      MethodSensitivityStabilityAccuracyAnti-interferenceSignal processingDetection difficulty
      Fluorescence intensity methodhighlowlowlowsimplelow
      Fluorescence intensity ratio methodhighhighnormalhighnormallow
      Fluorescence lifetime methodlowhighnormalhighsimplehigh
      Fluorescence emission peak wavelength shift methodlowhighlowhighnormalnormal
      Fluorescence signal-noise ration methodnormalhighnormalnormalcomplicatedlow
      Efficiency signal conversion methodhighnormalnormalnormalcomplicatedlow
      Self-referenced phase shift methodlownormalnormalhighnormalnormal
    • Table 2. Optical fiber temperature sensing probes based on fluorescence intensity ratio prepared by doping methods

      View table

      Table 2. Optical fiber temperature sensing probes based on fluorescence intensity ratio prepared by doping methods

      MethodMixed elementRange /°CWavelength /nmOccasionSensitivityAccuracyDeviationResolutionRef.
      WeldingEr3+26‒60545/532thermocouple0.01 ℃-10.06 ℃36
      Er3+30‒1001530/1565heating platform0.00056 ℃-137
      Er3+30‒110980/1540lab1.2 ℃38
      Er3+18‒150515-533/543-561oven2.2 ℃0.3 ℃39
      Er3+22‒5001535/1552thermal chamber0.000335 ℃-16 ℃20
      Er3+20‒540515-525/555-565thermocouple0.025 K-10.1 K40
      Er3+25‒6001133/1237oven0.008 ℃-141
      Yb3+22‒160905/1064heating platform1 ℃1.5 ℃42
      Yb3+25‒600976/1030oven0.0095 ℃-11 ℃0.6 ℃43
      Nd3+25‒900820-840/880-930oven1.5 ℃44
      Nd3+250‒1500820-840/895-915oven0.0102 ℃-12.5 ℃45
      Er3+, Yb3+30‒150520/550lab46
      NaYF4∶Er3+, Yb3+40‒100525/545oven0.0087‒0.0144 K-126
      Pr3+, Nd3+,Yb3+200‒600

      810-830/866-894

      900-910/

      1051.5-1076.5

      oven0.017 ℃-11 ℃47
      Chemical vapor deposition and solution dopingBi25‒500950-1200/1200-1500oven0.0091‒0.0097 K-148
      Nd3+, Yb3+10‒140

      920-930/1020-1030

      820-840/880-930

      heating platform

      0.0156 ℃-1

      0.0112 ℃-1

      2 ℃49
      Er3+/Yb3+20‒1501040-1070/880-970oven0.3 ℃50
      Er3+, Yb3+25‒3001012.5/1537.5oven

      1 ℃

      10 ℃

      51
      Er3+, Yb3+25‒600530/555oven0.016 dB·℃-11.1 ℃52
      Sb3+, Er3+, Ge3+20‒6001535/1552oven0.000695 ℃-12.8 ℃53
      Solution dopingEu3+25‒100615/450thermocouple54
      Er3+, Yb3+22‒51organism0.00526 K-10.1‒0.3 ℃55
      NaYF4∶Yb, Er25‒70525/545organism0.018 ℃-127

      β-NaLuF4∶Yb3+/

      Tm3+/Er3+

      30‒90521/542lab0.00311 K-119
      NaY0.77Yb0.20Er0.03F425‒100525/550heating platform0.00256 ℃-10.3 ℃56
      NaYF4∶(18%)Yb3+, (2%)Er3+22‒200514‒523/533‒562sand and air bath0.0029 K-12.7 K57
      Laser heating pedestal methodHo3+/Yb3+25‒350549/667oven0.0489 K-158
      Tm3+/Yb3+60‒460660‒740/740‒850thermocouple0.021 K-159
      Er3+, Yb3+25‒450524/546thermocouple0.00486 K-128
      Er3+/Yb3+室温-600502‒542/542‒592electric furnace0.0087 K-160
      CodepositionYb3+/Tm3+、, Eu3+, Tb3+20‒406700/800furnace

      0.024 K-1

      0.022 K-1

      29
      Melt quenchingEr3+/Yb3+30‒287545/523oven0.012 K-11 K0.2%32
      Wet spinningSrAl2O4∶Er3+, Dy3+, Y2O2S∶Eu3+,Mg2+, Ti4+25‒45512‒596/616‒626thermal gravimetric analyzer31
      ElectrospinningNa (Y1-x-yErxYby)F4/PAN(NYF-EY/PAN)30‒150523/542lab0.0148 K-130
      ExtrusionEu3+20‒95623/585gas flow cell1%33
    • Table 3. Optical fiber temperature sensing probes based on fluorescence lifetime prepared by doping methods

      View table

      Table 3. Optical fiber temperature sensing probes based on fluorescence lifetime prepared by doping methods

      MethodMixed elementRange /°COccasionSensitivityAccuracyDeviationResolutionRef.
      WeldingEr3+25‒120oven1.2 ℃61
      Er3+30‒150oven0.07 μs·℃-10.02%62
      Er3+25‒150oven0.000247 K-11.8 ℃63
      Er3+0‒600lab64
      Er3+500‒600oven50‒100 ℃65
      Yb3+lab66
      Yb3+-196‒170oven0.00013 ms K-167
      Yb3+23‒977tube furnace68
      Pr3+300‒500oven69
      Nd3+20‒90temperature control room0.98 ℃70
      Tm3+25‒800oven7 μs·℃-11 ℃1 ℃71
      Tm3+25‒1350oven6 ℃72
      Er3+/Yb3+30‒150oven0.8 ℃73
      Er3+/Yb3+0‒850oven5 ℃74
      Yb3+, Tb3+25‒977furnace75
      Chemical vapor deposition and solution dopingPr3+20‒80hot water5%76
      Er3+/Yb3+25‒300oven0.0145 ms·℃-10.35 ms77
      Solution dopingNd3+0‒150microwave oven0.3 ℃78
      Cr3+25‒100battery10 μs·℃-10.3 ℃0.06 ℃21
      Cr3+27‒277electric oven0.625 μs·℃-179
      Laser heating pedestal methodEr3+25‒1274tube furnace0.003 K-180
      Tm3+25‒1200oven3 μs·℃-15 ℃2.5 ℃81
      Cr3+-20‒500copper block heating device1‒250 μs·℃-182
      Cr3+0‒600electric stove0.2 ℃83
      Cr3+0‒923oven4.62%2.4 K84
    • Table 4. Comparison of preparation methods

      View table

      Table 4. Comparison of preparation methods

      MethodPreparation methodMeasurement rangeStabilityRepeatabilityCost
      Dopingnormallargehighnormalhigh
      Chemical modification and physical depositioncomplicatednormallowlowlow
      Encapsulationsimplenormalhighhighlow
      Special fiber fillingcomplicatedsmallnormallowhigh
    Tools

    Get Citation

    Copy Citation Text

    Jianwei Huang, Ting Liu. Review of Research on Optical Fiber Fluorescence Temperature Probes[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516023

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Mar. 21, 2022

    Accepted: Jun. 22, 2022

    Published Online: Aug. 8, 2022

    The Author Email: Ting Liu (liut14@hqu.edu.cn)

    DOI:10.3788/LOP202259.1516023

    Topics