Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1469(2025)

Application and Prospects of Synchrotron X-Ray Technology for All-Solid-State Batteries

WU Meng1, LI Yang1, LIU Hong2, WANG Xun1, and FAN Lizhen1、*
Author Affiliations
  • 1Institute of Advanced Materials and Technology, Beijing University of Science and Technology, Beijing 100083, China
  • 2School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • show less
    References(30)

    [1] [1] FAN L Z, HE H C, NAN C W. Tailoring inorganic–polymer composites for the mass production of solid-state batteries[J]. Nat Rev Mater, 2021, 6: 1003–1019.

    [2] [2] LI W H, LI M S, HU Y F, et al. Synchrotron-based X-ray absorption fine structures, X-ray diffraction, and X-ray microscopy techniques applied in the study of lithium secondary batteries[J]. Small Meth, 2018, 2(8): 1700341.

    [3] [3] WEN W, ZHANG LJ, FU YN, et al. Application of shanghai light source in material science[J]. Modern Physics, 2019, 31(5): 9–26.

    [4] [4] MAI Z H. Development history and current situation of synchrotron radiation-introduction to the new book “synchrotron radiation source and its application”[J]. Modern Physics, 2014, 26(2): 65–71.

    [5] [5] SAFANAMA D, SHARMA N, RAO R P, et al. Structural evolution of NASICON-type Li1+xAlxGe2−x(PO4)3 usingin situsynchrotron X-ray powder diffraction[J]. J Mater Chem A, 2016, 4(20): 7718–7726.

    [6] [6] HU L, REN Y L, WANG C W, et al. Fusion bonding technique for solvent-free fabrication of all-solid-state battery with ultrathin sulfide electrolyte[J]. Adv Mater, 2024, 36(29): e2401909.

    [7] [7] LI X, REN Z H, NOROUZI BANIS M, et al. Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries[J]. ACS Energy Lett, 2019, 4(10): 2480–2488.

    [8] [8] LIU Y L, SUN Q, ZHAO Y, et al. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition[J]. ACS Appl Mater Interfaces, 2018, 10(37): 31240–31248.

    [9] [9] LI T Y, KANG H X, ZHOU X W, et al. Three-dimensional reconstruction and analysis of all-solid Li-ion battery electrode using synchrotron transmission X-ray microscopy tomography[J]. ACS Appl Mater Interfaces, 2018, 10(20): 16927–16931.

    [10] [10] ZHANG X Y, VAN HULZEN M, SINGH D P, et al. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling[J]. Nat Commun, 2015, 6: 8333.

    [11] [11] LIU X S, YANG W L, LIU Z. Recent progress on synchrotron-basedin situsoft X-ray spectroscopy for energy materials[J]. Adv Mater, 2014, 26(46): 7710–7729.

    [12] [12] YANG S L, WANG D N, LIANG G X, et al. Soft X-ray XANES studies of various phases related to LiFePO4 based cathode materials[J]. Energy Environ Sci, 2012, 5(5): 7007–7016.

    [13] [13] ZHANG S M, ZHAO F P, CHANG L Y, et al. Amorphous oxyhalide matters for achieving lithium superionic conduction[J]. J Am Chem Soc, 2024, 146(5): 2977–2985.

    [14] [14] YASUNO S, SEO O, TAKAGI Y, et al. Development of hard X-ray photoelectron spectroscopy using synchrotron radiation X-ray up to 30 keV[J]. Rev Sci Instrum, 2023, 94(11): 115113.

    [15] [15] SING M, BERNER G, GOSS K, et al. Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard X-ray photoelectron spectroscopy[J]. Phys Rev Lett, 2009, 102(17): 176805.

    [16] [16] XIANG Y X, LI X, CHENG Y Q, et al. Advanced characterization techniques for solid state lithium battery research[J]. Mater Today, 2020, 36: 139–157.

    [17] [17] JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nat Energy, 2023, 8: 230–240.

    [18] [18] FU J M, WANG S, WU D J, et al. Halide heterogeneous structure boosting ionic diffusion and high-voltage stability of sodium superionic conductors[J]. Adv Mater, 2024, 36(3): 2308012.

    [19] [19] WANG H, YU M, WANG Y, et al.In-situinvestigation of pressure effect on structural evolution and conductivity of Na3SbS4 superionic conductor[J]. J Power Sources, 2018, 401: 111–116.

    [20] [20] SHEN L, LI J L, KONG W J, et al. Anion-engineering toward high-voltage-stable halide superionic conductors for all-solid-state lithium batteries[J]. Adv Funct Mater, 2024, 34(48): 2408571.

    [21] [21] LI W H, LI M S, CHIEN P H, et al. Lithium-compatible and air-stable vacancy-rich Li9N2Cl3 for high-areal capacity, long-cycling all-solid-state lithium metal batteries[J]. Sci Adv, 2023, 9(42): eadh4626.

    [22] [22] LIN X T, ZHANG S M, YANG M H, et al. A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries[J]. Nat Mater, 2025, 24(1): 83–91.

    [23] [23] WU M, LIU H, QI X, et al. Structure designing, interface engineering, and application prospects for sodium-ion inorganic solid electrolytes[J]. InfoMat, 2024, 6(9): e12606.

    [24] [24] WANG C W, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries[J]. Chem Rev, 2020, 120(10): 4257–4300.

    [25] [25] VARDAR G, BOWMAN W J, LU Q Y, et al. Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode[J]. Chem Mater, 2018, 30(18): 6259–6276.

    [26] [26] LIU H, LIANG Y H, WANG C, et al. Priority and prospect of sulfide-based solid-electrolyte membrane[J]. Adv Mater, 2023, 35(50): e2206013.

    [27] [27] KOBAYASHI K, YABASHI M, TAKATA Y, et al. High resolution-high energy X-ray photoelectron spectroscopy using third-generation synchrotron radiation source, and its application to Si-highkinsulator systems[J]. 2003, 83(5): 1005–1007.

    [28] [28] WANG C H, LIANG J W, KIM J T, et al. Prospects of halide-based all-solid-state batteries: From material design to practical application[J]. Sci Adv, 2022, 8(36): eadc9516.

    [29] [29] KIM S Y, BAK S M, JUN K, et al. Revealing dynamic evolution of the anode-electrolyte interphase in all-solid-state batteries with excellent cyclability[J]. Adv Energy Mater, 2024, 14(27): 2401299.

    [30] [30] NING Z Y, JOLLY D S, LI G C, et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells[J]. Nat Mater, 2021, 20(8): 1121–1129

    Tools

    Get Citation

    Copy Citation Text

    WU Meng, LI Yang, LIU Hong, WANG Xun, FAN Lizhen. Application and Prospects of Synchrotron X-Ray Technology for All-Solid-State Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1469

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 28, 2024

    Accepted: Jul. 11, 2025

    Published Online: Jul. 11, 2025

    The Author Email: FAN Lizhen (fanlizhen@ustb.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240837

    Topics