Laser & Optoelectronics Progress, Volume. 59, Issue 6, 0617029(2022)

Medical Image Fusion Based on Multi-Scale Feature Learning and Edge Enhancement

Wanxin Xiao1,2, Huafeng Li1,2, Yafei Zhang1,2、*, Minghong Xie1, and Fan Li1,2
Author Affiliations
  • 1Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming , Yunnan 650500, China
  • 2Yunnan Key Laboratory of Artificial Intelligence, Kunming , Yunnan 650500, China
  • show less
    Figures & Tables(10)
    Basic framework of multi-scale feature learning and edge enhancement fusion network
    Fusion results obtained by the CNN and NSCT-PAPCNN methods. (a) Source CT image; (b) source MR-T2 image; (c) CNN; (d) NSCT-PRPCNN
    Source image samples in testing dataset
    Visual comparison of the different methods. (a) Source CT image; (b) source MR-T2 image; (c) FW-Net; (d) GF; (e) CNN; (f) NSCT; (g) NSCT-PRPCNN; (h) proposed method
    Fusion results without and with edge reinforcement branches. (a) Without edge reinforcement branch; (b) with edge reinforcement branch
    Fusion results obtained by the proposed method in MR-T1 and MR-T2 image fusion task. (a) Source MR-T1 image; (b) source MR-T2 image; (c) proposed method
    • Table 1. Structure of MFEnet

      View table

      Table 1. Structure of MFEnet

      ModuleConvolutional layerSizeNumber of input channelsNumber of output channelsActivation layer
      Feature extraction module

      C1

      C2

      C3

      C4

      C5

      C6

      3

      1

      3

      5

      1

      3

      1

      64

      64

      64

      192

      64

      64

      64

      64

      64

      64

      64

      ReLU

      ReLU

      ReLU

      ReLU

      ReLU

      ReLU

      Reconstruction module

      C7

      C8

      C9

      C10

      3

      3

      3

      3

      64

      64

      32

      16

      64

      32

      16

      1

      ReLU

      ReLU

      ReLU

      ReLU

    • Table 2. Algorithms of MFEnet training and testing

      View table

      Table 2. Algorithms of MFEnet training and testing

      Algorithm MFEnet training and testing algorithms

      Training

      Input:Training set source image Ii

      Output:Reconstructed image Io

      1)Randomly select m source images from the training set I1,,Im

      2)Input m source images into the feature extraction module to generate source image features F

      3)Input F into the reconstruction module to generate a reconstructed image Io

      4)Use Adam optimizer to update the parameters of the feature extraction module and reconstruction module:

      θ1WHIo-IiF2+αIo-IiF2

      5)If the number of iterations is equal to epoch,the training ends,otherwise repeat steps 1)-4)

      Testing

      Input:Testing set source images I1 and I2

      Output:Fused image If

      1)Input I1 and I2 into the feature extraction module to get the source image features F1 and F2

      2)Input I1 and I2 into the edge enhancement module to get the source image edge maps E1 and E2

      3)Input F1 and F2 into the fusion module and the reconstruction module to obtain the intermediate fusion image Ifm

      4)Combine IfmE1,and E2 to get the final fusion image If

    • Table 3. Average value of quality evaluation index of 20 fused images

      View table

      Table 3. Average value of quality evaluation index of 20 fused images

      MethodFMIpixelSCDSSIMSLQYTime /s

      FW-Net

      GF

      CNN

      NSCT

      NSCT-PRPCNN

      Proposed method

      0.8182

      0.8595

      0.8637

      0.873

      0.8448

      0.8741

      0.7776

      0.8910

      1.1123

      0.969

      1.2690

      1.2879

      0.5108

      0.6612

      0.5717

      0.6160

      0.6350

      0.7412

      0.0072

      0.0167

      0.0134

      0.0155

      0.0122

      0.0069

      0.6600

      0.8407

      0.7165

      0.7311

      0.7575

      0.8422

      0.0199

      0.0912

      9.601

      3.43

      9.601

      0.0189

    • Table 4. Average value of the quality evaluation index of fusion results with four different fusion rules

      View table

      Table 4. Average value of the quality evaluation index of fusion results with four different fusion rules

      Fusion ruleFMIpixelSCDSSIMSLQY

      Addition35

      Average36

      Weighted average37

      Max value34

      0.8728

      0.8689

      0.8708

      0.8741

      1.1951

      1.1703

      1.2456

      1.2879

      0.7422

      0.7270

      0.7337

      0.7412

      0.0071

      0.0068

      0.0073

      0.0069

      0.8116

      0.8095

      0.8119

      0.8422

    Tools

    Get Citation

    Copy Citation Text

    Wanxin Xiao, Huafeng Li, Yafei Zhang, Minghong Xie, Fan Li. Medical Image Fusion Based on Multi-Scale Feature Learning and Edge Enhancement[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617029

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Oct. 25, 2021

    Accepted: Nov. 29, 2021

    Published Online: Mar. 8, 2022

    The Author Email: Yafei Zhang (zyfeimail@163.com)

    DOI:10.3788/LOP202259.0617029

    Topics