Chinese Journal of Lasers, Volume. 49, Issue 6, 0614002(2022)
Simulation of Enhanced Terahertz Wave Generation by Interaction Between Relativistic Femtosecond Laser and Microstructure Targets
[1] Siegel P H. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory and Techniques, 52, 2438-2447(2004).
[2] Pickwell E, Wallace V P. Biomedical applications of terahertz technology[J]. Journal of Physics D: Applied Physics, 39, R301-R310(2006).
[3] Globus T R, Woolard D L, Khromova T et al. THz-spectroscopy of biological molecules[J]. Journal of Biological Physics, 29, 89-100(2003).
[4] Hebling J, Yeh K L, Hoffmann M C et al. High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 345-353(2008).
[5] Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nature Photonics, 7, 680-690(2013).
[6] Matsunaga R, Shimano R. Nonequilibrium BCS state dynamics induced by intense terahertz pulses in a superconducting NbN film[J]. Physical Review Letters, 109, 187002(2012).
[7] Shen J L, Zhang C L. Terahertz nondestructive imaging technology and its application[J]. Nondestructive Testing Technologying, 27, 146-147(2005).
[8] Zheng X, Liu C. Recent development of THz technology and its application in radar and communication system[J]. Journal of Microwaves, 26, 1-6(2010).
[9] Wu Z, Fisher A S, Goodfellow J et al. Intense terahertz pulses from SLAC electron beams using coherent transition radiation[J]. The Review of Scientific Instruments, 84, 022701(2013).
[10] Hirori H, Doi A, Blanchard F et al. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3[J]. Applied Physics Letters, 98, 091106(2011).
[11] Shalaby M, Hauri C P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness[J]. Nature Communications, 6, 5976(2015).
[12] Vicario C, Jazbinsek M, Ovchinnikov A V et al. High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr: forsterite laser[J]. Optics Express, 23, 4573-4580(2015).
[13] Weling A S, Hu B B, Froberg N M et al. Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas[J]. Applied Physics Letters, 64, 137-139(1994).
[14] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 43, 267(1979).
[15] Lv C, Zhao B Z, Wan F et al. Effect of the electron heating transition on the proton acceleration in a strongly magnetized plasma[J]. Physics of Plasmas, 26, 103101(2019).
[16] Lv C, Meng X H, Wang Z et al. Enhanced proton acceleration via the leaky light-sail regime by laser interaction with nanofoils in strongly magnetized plasmas[J]. Physics of Plasmas, 27, 063107(2020).
[17] Hajima R, Fujiwara M. Narrow-band GeV photons generated from an X-ray free-electron laser oscillator[J]. Physical Review Accelerators and Beams, 19, 020702(2016).
[18] Lu H Y, Liu J S, Wang C et al. Efficient fusion neutron generation from heteronuclear clusters in intense femtosecond laser fields[J]. Physical Review A, 80, 051201(2009).
[19] Hui C, Fiuza F, Link A et al. Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications[J]. Physical Review Letters, 114, 215001(2015).
[20] Hamster H, Sullivan A, Gordon S et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. Physical Review Letters, 71, 2725-2728(1993).
[21] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air[J]. Optics Letters, 25, 1210-1212(2000).
[22] Kim K Y, Taylor A J, Glownia J H et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nature Photonics, 2, 605-609(2008).
[23] Zhang L L, Wang W M, Wu T et al. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios[J]. Physical Review Letters, 119, 235001(2017).
[24] Ma D N, Dong L Q, Zhang M H et al. Enhancement of terahertz waves from two-color laser-field induced air plasma excited using a third-color femtosecond laser[J]. Optics Express, 28, 20598-20608(2020).
[25] Tian Y, Guo S L, Zeng Y S et al. High-field terahertz sources and matter manipulation(invited)[J]. Acta Photonica Sinica, 49, 1149001(2020).
[26] Wang J X, Yu Z Q, Hu J B et al. Effect of pulse separation induced by dual-wavelength wave plate on terahertz waves radiation from two-color field[J]. Chinese Journal of Lasers, 48, 0314002(2021).
[27] Feng S J, Dong L Q, Ma D N et al. Terahertz waves generated through plasma under linear electrodes[J]. Acta Optica Sinica, 40, 1030001(2020).
[28] Liao G Q, Li Y T, Li C et al. Intense terahertz radiation from relativistic laser-plasma interactions[J]. Plasma Physics and Controlled Fusion, 59, 014039(2017).
[29] Liao G Q, Li Y T. Review of intense terahertz radiation from relativistic laser-produced plasmas[J]. IEEE Transactions on Plasma Science, 47, 3002-3008(2019).
[30] Yi L Q, Fülöp T. Coherent diffraction radiation of relativistic terahertz pulses from a laser-driven microplasma waveguide[J]. Physical Review Letters, 123, 094801(2019).
[31] Zeng Y, Zhou C, Song L et al. Guiding and emission of milijoule single-cycle THz pulse from laser-driven wire-like targets[J]. Optics Express, 28, 15258-15267(2020).
[32] Mondal S, Wei Q, Ding W J et al. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses[J]. Scientific Reports, 7, 40058(2017).
[33] Arber T D, Bennett K, Brady C S et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 57, 113001(2015).
[34] Zhang S Y, Yu J Q, Shou Y R et al. Terahertz radiation enhanced by target ablation during the interaction of high intensity laser pulse and micron-thickness metal foil[J]. Physics of Plasmas, 27, 023101(2020).
[35] Yu J Q, Zhou W M, Cao L H et al. Enhancement in coupling efficiency from laser to forward hot electrons by conical nanolayered targets[J]. Applied Physics Letters, 100, 204101(2012).
Get Citation
Copy Citation Text
Ji Zhang, Xiaona Ban, Baoxian Tian, Chong Lü, Zhao Wang, Qiushi Liu, Xiaohua Zhang, Baozhen Zhao. Simulation of Enhanced Terahertz Wave Generation by Interaction Between Relativistic Femtosecond Laser and Microstructure Targets[J]. Chinese Journal of Lasers, 2022, 49(6): 0614002
Category: terahertz technology
Received: Jun. 28, 2021
Accepted: Aug. 3, 2021
Published Online: Mar. 2, 2022
The Author Email: Zhang Ji (zhangji@ciae.ac.cn), Lü Chong (lvchong@ciae.ac.cn), Zhao Baozhen (zhaobaozhen@ciae.ac.cn)