Laser & Optoelectronics Progress, Volume. 60, Issue 12, 1215004(2023)

Algorithm for Binocular Vision Measurements Based on Local Information Entropy and Gradient Drift

Shuhua Zhou, Sixiang Xu*, Chenchen Dong, and Hao Zhang
Author Affiliations
  • College of Mechanical Engineering, Anhui University of Technology, Maanshan243032, Anhui, China
  • show less
    Figures & Tables(20)
    Flow chart of continuous casting slab ranging
    Comparison diagrams of entropy value of continuous casting slab model. (a) Continuous casting slab model diagram;(b) continuous casting slab model entropy diagram
    Schematic diagram of improved rotation invariant LBP
    Flow chart of gradient drift
    Schematic diagrams of gradient drift. (a) Schematic diagram of single drift; (b) schematic diagram of n drifts
    Before stereo correction (the top) and after stereo correction (the bottom)
    Detection results for different information entropy thresholds
    Comparison results of feature detection. (a) Detection results of traditional SIFT algorithm; (b) detection results of traditional SURF algorithm; (c) detection results of traditional ORB algorithm; (d) detection results of proposed algorithm
    Matching effect diagrams. (a) Traditional ORB algorithm rotated 0°; (b) proposed algorithm rotated 0°; (c) traditional ORB algorithm rotated 45°; (d) proposed algorithm rotated 45°; (e) traditional ORB algorithm rotated 180°; (f) proposed algorithm rotated 180°
    Comparison results of matching accuracy and matching time. (a) Comparison results of matching accuracy; (b) comparison results of matching time
    Matching points filtering
    • Table 1. Internal parameters in binocular camera

      View table

      Table 1. Internal parameters in binocular camera

      Parameters in the left cameraParameters in the right camera
      2201.7-2.7064902.151002199620.98820012201.7-1.3224810.714202199539.9540001
    • Table 2. External parameters in binocular camera

      View table

      Table 2. External parameters in binocular camera

      Rotation matrix RTranslation matrix T
      0.99880.0024-0.0480-0.00291.0000-0.00920.04800.00930.9988-101.9358-0.2669-2.7488
    • Table 3. Comparison results of feature detection data

      View table

      Table 3. Comparison results of feature detection data

      ParameterSIFT algorithmSURF algorithmORB algorithmProposed algorithm
      Number of features440359309176
      Time /ms178171550.56181.821122.814
    • Table 4. Pixel coordinate update results from gradient drift (1)

      View table

      Table 4. Pixel coordinate update results from gradient drift (1)

      No.The left image coordinates before gradient drift /pixelThe left image coordinates after gradient drift /pixelDrift times
      A(691.411,578.248)(691.411,578.248)0
      B(615.847,607.103)(615.995,605.662)2
      C(602.562,752.617)(603.996,753.417)4
      D(1288.445,959.549)(1287.945,957.812)3
      A(462.151,577.643)(462.225,578.344)3
      B(373.226,604.886)(373.226,605.291)2
      C(363.613,751.803)(363.608,753.103)2
      D(1010.215,958.468)(1009.224,957.468)1
    • Table 5. Three-dimensional coordinate update results from gradient drift

      View table

      Table 5. Three-dimensional coordinate update results from gradient drift

      No.Three-dimensional coordinates before gradient driftThree-dimensional coordinates after gradient drift
      A(71.4026,0.4204,-978.9412)(71.4257,0.5764,-979.2572)
      B(99.2183,12.1819,-925.0314)(99.0957,11.9569,-924.4675)
      C(-106.4104,74.7447,-939.2467)(-105.1653,74.7425,-933.6242)
      D(159.9014,139.9574,-806.6422)(159.4369,139.2103,-805.2212)
    • Table 6. Measurement results of continuous casting slab model

      View table

      Table 6. Measurement results of continuous casting slab model

      SideMeasurement results /mmActual size /mmAbsolute error /mmRelative error /%
      AB62.426630.573-0.910
      BC63.739630.7391.173
      CD301.0943001.0940.365
    • Table 7. Measurement results of traditional SIFT algorithm

      View table

      Table 7. Measurement results of traditional SIFT algorithm

      No.Ranging length /mmActual length /mmAbsolute error /mmRelative error /%
      1305.6803005.6801.893
      2294.2213005.779-1.926
      3305.7803005.7801.927
      4294.3193005.681-1.894
      5305.8403005.8401.947
      Mean301.1683005.7521.917
    • Table 8. Measurement results of traditional ORB algorithm

      View table

      Table 8. Measurement results of traditional ORB algorithm

      No.Ranging length /mmActual length /mmAbsolute error /mmRelative error /%
      1295.3453004.655-1.552
      2304.5633004.5631.521
      3304.7003004.7001.567
      4295.4353004.565-1.522
      5304.6533004.6531.551
      Mean300.9393004.6271.542
    • Table 9. Measurement results of proposed algorithm

      View table

      Table 9. Measurement results of proposed algorithm

      No.Ranging length /mmActual length /mmAbsolute error /mmRelative error /%
      1301.0943001.0940.365
      2301.1373001.1370.379
      3298.8873001.113-0.371
      4298.7733001.227-0.409
      5301.1583001.1580.386
      Mean300.2103001.1460.382
    Tools

    Get Citation

    Copy Citation Text

    Shuhua Zhou, Sixiang Xu, Chenchen Dong, Hao Zhang. Algorithm for Binocular Vision Measurements Based on Local Information Entropy and Gradient Drift[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1215004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 11, 2022

    Accepted: Jun. 13, 2022

    Published Online: Jun. 5, 2023

    The Author Email: Sixiang Xu (xsxhust@ahut.edu.cn)

    DOI:10.3788/LOP221272

    Topics