Optics and Precision Engineering, Volume. 33, Issue 5, 763(2025)
Machine vision-based method for measuring micro-volume liquid in transparent tubes
[1] ZHONG J D, SUN B, ZHAO Y X et al. Calibration method for optical measurement of ultra-micro liquid volume[J]. Acta Metrologica Sinica, 41, 960-964(2020).
钟家栋, 孙斌, 赵玉晓. 基于静力称重法的微小容量光学检测系统标定[J]. 计量学报, 41, 960-964(2020).
[2] ZHANG J Y, SUN B, XIE X D et al. Volume metrology method for micro liquid based on laser and machine vision[J]. Acta Metrologica Sinica, 39, 504-509(2018).
张竟月, 孙斌, 谢玄达. 基于激光和机器视觉的微量液体容量计量方法[J]. 计量学报, 39, 504-509(2018).
[3] 王金涛, 陈超云, 李志昊. 超微量液体容积双波长参比测量方法研究[J]. 计量学报, 36, 256-259(2015).
WANG J T, CHEN CH Y, LI ZH H et al. Study on dual-wavelength photometric method for ultra micro liquid volume measurement[J]. Acta Metrologica Sinica, 36, 256-259(2015).
[4] LI Z H, WANG J T, LIU X et al. Non-gravimetric method for ultra micro liquid volume measurement[J]. Acta Metrologica Sinica, 38, 296-299(2017).
李之昊, 王金涛, 刘翔. 基于Karl Fischer电位滴定原理的超微量液体容积精密测量方法[J]. 计量学报, 38, 296-299(2017).
[5] MENG X Y. A deep learning-based transparent container liquid level volume measurement device and method[P]. CN.
孟祥印. 一种基于深度学习的透明容器液位体积测量装置及方法[P]. CN.
[6] ZHOU B. A standard device for liquid flow rate based on machine vision liquid level detection[P]. CN.
周彬. 一种基于机器视觉液位检测的液体流量标准装置[P]. CN.
[7] WEI X J. A new type of PVC hose[J]. Modern Plastics Processing and Applications, 26, 46(2014).
魏晓娟. 一种新型聚氯乙烯软管[J]. 现代塑料加工应用, 26, 46(2014).
[8] KIM D E, AHN H S, KWON T S. Experimental investigation of filmwise and dropwise condensation inside transparent circular tubes[J]. Applied Thermal Engineering, 110, 412-423(2017).
[9] ZHENG R X, SUN Q Y, XIAO G D. Research on workpiece dimension measurement based on machine vision[J]. Electronic Measurement Technology, 44, 110-115(2021).
郑如新, 孙青云, 肖国栋. 基于机器视觉的工件尺寸测量研究[J]. 电子测量技术, 44, 110-115(2021).
[10] SHIAU Y R, JIANG B C. Study of a measurement algorithm and the measurement loss in machine vision metrology[J]. Journal of Manufacturing Systems, 18, 22-34(1999).
[11] NYALALA I, OKINDA C, NYALALA L et al. Tomato volume and mass estimation using computer vision and machine learning algorithms: Cherry tomato model[J]. Journal of Food Engineering, 263, 288-298(2019).
[12] SAIF Y, YUSOF Y, LATIF K et al. Roundness Holes’ Measurement for milled workpiece using machine vision inspection system based on IoT structure: a case study[J]. Measurement, 195, 111072(2022).
[13] XIAO G F, LI Y T, XIA Q X et al. Research on the on-line dimensional accuracy measurement method of conical spun workpieces based on machine vision technology[J]. Measurement, 148, 106881(2019).
[14] ZHANG J, KONG X, OBRIEN E J et al. Noncontact measurement of tire deformation based on computer vision and Tire-Net semantic segmentation[J]. Measurement, 217, 113034(2023).
[15] FAHIMIPIREHGALIN M, TRUNZER E, ODENWELLER M et al. Automatic visual leakage detection and localization from pipelines in chemical process plants using machine vision techniques[J]. Engineering, 7, 758-776(2021).
[16] DE OLIVEIRA RAMOS R, DOUGLAS DE SOUSA FERNANDES D, ELIAS DE ALMEIDA V et al. A video processing and machine vision-based automatic analyzer to determine sequentially total suspended and settleable solids in wastewater[J]. Analytica Chimica Acta, 1206, 339411(2022).
[17] ZHANG Y L, YUAN L B, LIANG W et al. 3D-SWiM: 3D vision based seam width measurement for industrial composite fiber layup
[18] 时浩, 邓高旭, 李正楠. 基于激光点云的中厚板表面平整度测量[J]. 光学 精密工程, 32, 2464-2473(2024).
SHI H, DENG G X, LI ZH N et al. Surface flatness measurement of medium-thick plate based on Laser point cloud[J]. Opt. Precision Eng., 32, 2464-2473(2024).
[19] 牛海莎, 潘雨婷, 祝连庆. 全光纤多重回馈液体折射率测量[J]. 光学 精密工程, 29, 982-988(2021).
NIU H SH, PAN Y T, ZHU L Q et al. Measurement of all-fiber multi-feedback liquid refractive index[J]. Opt. Precision Eng., 29, 982-988(2021).
[20] CLIFT R, GRACE J R, WEBER M E[M]. Bubbles, Drops, and Particles, 380(1978).
[21] MUSTERD M, VAN STEIJN V, KLEIJN C R et al. Calculating the volume of elongated bubbles and droplets in microchannels from a top view image[J]. RSC Advances, 5, 16042-16049(2015).
[22] GLUZMAN I, THOMAS F O. Characterization of bubble dynamics in the nozzle flow of aviation fuels
[23] [standard](2016).
[standard](2016).
[24] DATTA A, KIM J S, KANADE T. Accurate camera calibration using iterative refinement of control points[C], 1201-1208(2009).
[25] ZHANG Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330-1334(2000).
[26] MA R J, LI C, XING Y B et al. Defect focused Harris3D & boundary fine-tuning optimized region growing: Lithium battery pole piece defect segmentation[J]. Measurement, 242, 116147(2025).
[27] ZHU L B, ZHANG H, XIANG X C et al. Layer thickness measurement of the TRISO-coated particle based on U-net[J]. NDT & E International, 121, 102468(2021).
[28] LI C, YAN H X, QIAN X et al. A domain adaptation YOLOv5 model for industrial defect inspection[J]. Measurement, 213, 112725(2023).
[29] LEI F X, MA R J, LI X H. Use of phase-angle model for full-field 3D reconstruction under efficient local calibration[J]. Sensors, 24, 2581(2024).
Get Citation
Copy Citation Text
Hao WANG, Xinghui LI, Wei XIAO, Xiang QIANG, Xiaohao WANG. Machine vision-based method for measuring micro-volume liquid in transparent tubes[J]. Optics and Precision Engineering, 2025, 33(5): 763
Category:
Received: Dec. 26, 2024
Accepted: --
Published Online: May. 20, 2025
The Author Email: Xinghui LI (li.xinghui@sz.tsinghua.edu.cn)