Laser & Optoelectronics Progress, Volume. 60, Issue 23, 2322001(2023)

Impact Simulation Analysis and Optimization of a Long-Wave Infrared Optical Lens

Long Chen, Yu Zhang*, Kang Xie, Zhi Liu, and Shenmin Zhou
Author Affiliations
  • Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
  • show less
    Figures & Tables(17)
    3D model of infrared lens
    Lens 1 displacement cloud image
    Lens 2 displacement cloud image
    Lens 3 displacement cloud image
    Zernike coefficient of each lens surface. (a) Lens 1; (b) lens 2; (c) lens 3
    Lens 1 displacement cloud image after optimization
    Lens 2 displacement cloud image after optimization
    Lens 3 displacement cloud image after optimization
    PV before and after lens surface optimization
    RMS before and after lens surface optimization
    • Table 1. Technical index of infrared optical lens

      View table

      Table 1. Technical index of infrared optical lens

      Spectral response /μmFocal length /mmFField of view /(°)×(°)Operating temperature /℃
      8‒12901.08.5×6.4-40‒60
    • Table 2. Infrared optical lens material properties

      View table

      Table 2. Infrared optical lens material properties

      MaterialDensity /(kg·m-3Elastic modulus /GPaPoisson’s ratioYield limit /MPa
      Ge53201030.28345
      Al2780760.33240
    • Table 3. PV and RMS of lens surface after impact

      View table

      Table 3. PV and RMS of lens surface after impact

      ParameterLens 1Lens 2Lens 3
      First sideSecond sideFirst sideSecond sideFirst sideSecond side
      PV of lens surface /μm51.449.653.544.53.32.9
      RMS of lens surface /μm12.813.213.611.40.80.7
    • Table 4. Rigid body displacement of mirror after impact

      View table

      Table 4. Rigid body displacement of mirror after impact

      ParameterLens 1Lens 2Lens 3
      First sideSecond sideFirst sideSecond sideFirst sideSecond side
      e8.10×10-5-9.68×10-51.70×10-41.40×10-41.01×10-59.98×10-6
      f-3.25×10-21.69×10-22.49×10-22.48×10-2-2.83×10-3-2.83×10-3
      g-3.38×10-27.60×10-31.70×10-21.71×10-27.48×10-57.75×10-5
      θx1.48×10-55.70×10-47.50×10-47.50×10-47.74×10-57.74×10-5
      θy4.76×10-72.38×10-6-1.97×10-6-1.52×10-63.50×10-73.14×10-7
      θz-2.20×10-71.94×10-8-3.03×10-6-3.03×10-6-4.65×10-7-4.70×10-7
    • Table 5. Preferred candidate point values

      View table

      Table 5. Preferred candidate point values

      Candidate pointInput parameterOutput parameter
      P1P2P3P4P5P6P7
      12.86671.73332.73336.0007.41670.03710.0427
      22.33332.26672.46675.6007.25000.03810.0434
      33.53332.00003.26677.2005.91670.03740.0432
    • Table 6. Comparison of model data before and after optimization

      View table

      Table 6. Comparison of model data before and after optimization

      ConditionP1 /mmP2 /mmP3 /mmP4 /mmP5 /mmMass /kg
      Before optimization3.01.53.06.06.00.99457
      After optimization2.81.72.76.07.40.97609
    • Table 7. Comparison of results before and after optimization

      View table

      Table 7. Comparison of results before and after optimization

      ConditionMaximum deformation /mmMaximum equivalent stress /MPa
      Lens 1Lens 2Lens 3Lens 1Lens 2Lens 3
      Before optimization0.04540.04760.0039194.74125.3280.14
      After optimization0.03610.04220.0030158.81101.2674.81
    Tools

    Get Citation

    Copy Citation Text

    Long Chen, Yu Zhang, Kang Xie, Zhi Liu, Shenmin Zhou. Impact Simulation Analysis and Optimization of a Long-Wave Infrared Optical Lens[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2322001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Oct. 31, 2022

    Accepted: Jan. 12, 2023

    Published Online: Dec. 11, 2023

    The Author Email: Yu Zhang (498380267@qq.com)

    DOI:10.3788/LOP222924

    Topics