Journal of Infrared and Millimeter Waves, Volume. 39, Issue 5, 533(2020)
Graphene/GaAs heterostructure based Millimeter/Terahertz wave photodetector
[1] Monch W.. On the physics of metal-semiconductor interfaces[J]. Reports on Progress in Physics, 53, 221-278(1990).
[2] Liu H, Song C, Springthorpe A et al. Terahertz quantum-well photodetector[J]. Applied Physics Letters, 84, 4068-4070(2004).
[3] Kopylov S, Tzalenchuk A, Kubatkin S et al. Charge transfer between epitaxial graphene and silicon carbide[J]. Applied Physics Letters, 97(2010).
[4] Vicarelli L, Vitiello M S, Coquillat D et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 11, 865-871(2012).
[5] Knap W, Teppe F, Meziani Y et al. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors[J]. Applied Physics Letters, 85, 675-677(2004).
[6] Peng K, Parkinson P, Fu L et al. Single Nanowire Photoconductive Terahertz Detectors[J]. Nano Letters, 15, 206-210(2015).
[7] Dyakonov, Michael, Shur M.. Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current[J]. Physical Review Letters, 71, 2465-2468(1993).
[8] Berry C W, Wang N, Hashemi M R et al. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes[J]. Nature Communications(4).
[9] Castro-Camus E, Lloyd-Hughes J, Johnston M B et al. Polarization-sensitive terahertz detection by multicontact photoconductive receivers[J]. Applied Physics Letters, 86(2005).
[10] Koppens F H L, Mueller T, Avouris P et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 9, 780-793(2014).
[11] Cai X, Sushkov A B, Suess R J et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene[J]. Nature Nanotechnology, 9, 814-819(2014).
[12] Viti L, Hu J, Coquillat, Dominique.. Black Phosphorus Terahertz Photodetectors[J]. Advanced Materials, 27, 5567-5572(2015).
[13] Yan J, Kim M H, Elle J A et al. Dual-gated bilayer graphene hot-electron bolometer[J]. Nature Nanotechnology, 7, 472-478(2012).
[14] Lao Y F, Perera A G U, Li L H et al. Tunable hot-carrier photodetection beyond the bandgap spectral limit[J]. Nature Photonics, 8, 412-418(2014).
[15] Hong Y J, Yang J W, Lee W H et al. Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs[J]. Advanced Materials, 25, 6914-6914(2013).
[16] Chen S, Han Z, Elahi M M et al. Electron optics with p-n junctions in ballistic graphene[J]. Science Letter, 353, 1522-1525(2016).
[17] Geim A K J S. Graphene: status and prospects[J]. science, 324, 1530-1534(2009).
[18] Li X, Chen W, Wang P et al. 18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell[J]. Nano Energy, 16, 310-319(2015).
[19] Nair R R, Blake P, Grigorenko et al. Fine structure constant defines visual transparency of graphene[J]. Science, 320, 1308-1308(2008).
[20] Rezgui K, Othmen R, Cavanna A et al. The improvement of InAs/GaAs quantum dot properties capped by Graphene[J]. Journal of Raman Spectroscopy, 44, 1529-1533(2013).
[21] Wu J, Yang Z, Qiu C et al. Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles[J]. Nanoscale, 10, 8023-8030(2018).
[22] Jiang M, Xiao H Y, Peng S M et al. A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures[J]. Scientific reports, 8, 2012(2018).
[23] Liu Q L, Zhao Z Y, Yi J H. Interfacial interaction and effects of GaAs/Graphene hetero-structures studied by First-principle calculations[J]. Journal of Alloys and Compounds, 795, 351-360(2019).
[24] Hu Zhi Ting, Gan Tao, Du Lei et al. A novel photodetector based on Graphene/InAs quantum dots/GaAs hetero-junction[J]. Journal of Infrared and Millimeter Waves, 38(2019).
[25] Ferrari A C, Meyer J C, Scardaci V. et al. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett, 97, 187401(2006).
[26] Malard L M, Pimenta M A, Dresselhaus G et al. Raman spectroscopy in graphene[J]. Physics Reports, 473, 51-87(2009).
[27] Tuinstra F, Koenig J L. Raman Spectrum of Graphite[J]. The Journal of Chemical Physics, 53, 1126-1130(1970).
[28] Yang X, Sun J, Qin et al. Room-temperature terahertz detection based on CVD graphene transistor[J]. Chinese Physics B, 24, 47206-047206(2015).
[29] Richards P L. Bolometers for infrared and millimeter waves[J]. J. Appl. Phys, 76, 1-24(1994).
[30] Tauk R, Teppe F, Boubanga S et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power[J]. Applied Physics Letters, 89(2006).
[31] Tang W, Politano A, Guo C et al. Ultrasensitive Room-Temperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator[J]. Advanced Functional Materials, 28, 1801786(2018).
[32] Liu C, Du L, Tang W et al. Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors[J]. Npg Asia Materials, 318-327(2018).
[33] Wu J, Yang Z, Qiu C et al. Junction investigation of graphene/silicon Schottky diodes[J]. Nanoscale research letters, 7, 302-302(2012).
[34] Mark H et al.
Get Citation
Copy Citation Text
Kai-Qi XU, Huang XU, Jia-Zhen ZHANG, Xiang-Dong WU, Lu-Han YANG, Jie ZHOU, Fang-Ting LIN, Lin WANG, Gang CHEN. Graphene/GaAs heterostructure based Millimeter/Terahertz wave photodetector[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 533
Category: Millimeter Wave and Terahertz Technology
Received: Dec. 10, 2019
Accepted: --
Published Online: Dec. 29, 2020
The Author Email: Fang-Ting LIN (gchen@mail.sitp.ac.cn)