Chinese Journal of Lasers, Volume. 41, Issue 9, 903007(2014)
Picosecond Laser Fabrication of Large-Area Surface Micro-Nano Lotus-Leaf Structures and Replication of Superhydrophobic Silicone Rubber Surfaces
[1] [1] W Barthlott, C Neinhuis. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.
[2] [2] Jiang Lei. Nanostructured materials with superhydrophobic surfaces—from nature to biomimesis[J]. Chemical Industry and Engineering Progress, 2003, 22(12): 1258-1264.
[3] [3] Tang Yong, Zhou Ming, Han Zhiwu, et al.. Recent research on manufacturing technologies of functional surface structure[J]. Journal of Mechanical Engineering, 2010, 46(23): 93-105.
[4] [4] P Roach, N J Shirtcliffe, M I Newton. Progess in superhydrophobic surface development[J]. Soft Matter, 2008, 4(2): 224-240.
[5] [5] Y Y Yan, N Gao, W Barthlott. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces[J]. Adv Colloid Interfac, 2011, 169(2): 80-105.
[6] [6] Xu Wenji, Song Jinlong, Sun Jing, et al.. Progress in fabrication and application of superhydrophobic surfaces on metal substrates[J]. Journal of Materials Engineering, 2011, (5): 93-98.
[7] [7] Xu Xianfeng, Liu Shuo, Hong Longlong. Preparation and developments of non-metal superhydrophobic materials[J]. China Plastics, 2013, 27(5): 12-18.
[8] [8] Zhou Ming, Zheng Aoran, Yang Jiahong. Superhydrophobic surfaces fabricated byreplica molding and its applications[J]. Acta Physico-Chimica Sinica, 2007, 23(8): 1296-1300.
[9] [9] M Manca, A Cannavale, L De Marco, et al.. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing[J]. Langmuir, 2009, 25(11): 6357-6362.
[10] [10] H Tavana, A Amirfazli, A W Neumann. Fabrication of superhydrophobic surfaces of n-hexatriacontane[J]. Langmuir, 2006, 22(13): 5556-5559.
[11] [11] H Li, X Wang, Y Song, et al.. Super-amphiphobic aligned carbon nanotube films[J]. Angew Chem Int Edit, 2001, 40(9): 1743-1746.
[12] [12] F Shi, X Chen, L Wang, et al.. Roselike microstructures formed by direct in situ hydrothermal synthesis: From superhydrophilicity to superhydrophobicity[J]. Chem Mater, 2005, 17(24): 6177-6180.
[13] [13] N J Shirtcliffe, G McHale, M I Newton, et al.. Wetting and wetting transitions on copper-based super-hydrophobic surfaces[J]. Langmuir, 2005, 21(3): 937-943.
[14] [14] K Y Yeh, L J Chen, J Y Chang. Contact angle hysteresis on regular pillar-like hydrophobic surfaces[J]. Langmuir, 2008, 24(1): 245-251.
[15] [15] E Gogolides, M Vlachopoulou, K Tsougeni, et al.. Micro and nano structuring and texturing of polymers using plasma processes: Potential manufacturing applications[J]. International Journal of Nanomanufacturing, 2010, 6(1-4): 152-163.
[16] [16] Liu Ying, Jiang Yijian. Super-hydrophobic surface of poly (vinylidene fluoride) film fast fabricated by KrF excimer laser irradiation[J]. Chinese J Lasers, 2011, 38(1): 0106002.
[17] [17] Wen Ya, Peng Yan, Zhang Dongsheng, et al.. Effect of pulse energy of femtosecond laser on the formation of spikes on the silicon surface in the ambient gas of SF6[J]. Chinese J Lasers, 2012, 39(4): 0406001.
[18] [18] Yang Huan, Huang Shan, Duan Jun, et al.. Contrastive study on laser ablation of single-crystal silicon by 1030 nm femtosecond laser and 355 nm nanosecond laser[J]. Chinese J Lasers, 2013, 40(1): 0103003.
[19] [19] Wu Bo, Zhou Ming, Li Baojia, et al.. Fabrication of light trapping microstructures on stainless steel surface by nanosecond laser[J]. Chinese J Lasers, 2013, 40(9): 0903002.
[20] [20] T Baldacchini, J E Carey, M Zhou, et al.. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 2006, 22(11): 4917-4919.
[21] [21] V Zorba, E Stratakis, M Barberoglou, et al.. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Adv Mater, 2008, 20(21): 4049-4054.
[22] [22] J Yong, Q Yang, F Chen, et al.. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Appl Phys A, 2013, 111(1): 243-249.
[24] [24] A M Kietzig, S G Hatzikiriakos, P Englezos. Patterned superhydrophobic metallic surfaces[J]. Langmuir, 2009, 25(8): 4821-4827.
[25] [25] B K Nayak, M C Gupta, K W Kolasinski. Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation[J]. Appl Phys A, 2008, 90(3): 399-402.
[26] [26] R Jagdheesh, B Pathiraj, E Karatay, et al.. Laser-induced nanoscale superhydrophobic structures on metal surfaces[J]. Langmuir, 2011, 27(13): 8464-8469.
[27] [27] J Noh, J H Lee, S Na, et al.. Fabrication of hierarchically micro-and nano-structured mold surfaces using laser ablation for mass production of superhydrophobic surfaces[J]. Jpn J Appl Phys, 2010, 49(10R): 106502.
[28] [28] T Jiang, J Koch, C Unger, et al.. Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces[J]. Appl Phys A, 2012, 108(4): 863-869.
[29] [29] B K Nayak, P O Caffrey, C R Speck, et al.. Superhydrophobic surfaces by replication of micro/nano-structures fabricated by ultrafast-laser-microtexturing[J]. Appl Surf Sci, 2013, 266: 27-32.
[30] [30] X Liang, S Wang, J Fan, et al.. Development of composite insulators in China[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(5): 586-594.
[31] [31] Li Tuo, Yang Jinxin, Wen Xiufang, et al.. Preparation and properties of RTV superhydrophobic surface as a antiflashover coating[J]. Silicone Material, 2008, 22(5): 290-295.
[32] [32] Zhou Rui, Jin Haiyun, Gao Naikui, et al.. Influence of surface roughness on superhydrophobicity of silicone rubber surface[J]. China Surface Engineering, 2009, 22(6): 30-35.
[33] [33] A Y Vorobyev, C Guo. Femtosecond laser nanostructuring of metals[J]. Opt Express, 2006, 14(6): 2164-2169.
[34] [34] K H Leitz, B Redlingshfer, Y Reg, et al.. Metal ablation with short and ultrashort laser pulses[J]. Physics Procedia, 2011, 12(3): 230-238.
[35] [35] Y Reg, C Kgeler, M Schmidt. Experimental studies on effects at micro-structuring of highly reflecting metals using nano-and picosecond-lasers[J]. Physics Procedia, 2010, 5(8): 245-253.
[36] [36] N A Patankar. Mimicking the lotus effect: Influence of double roughness structures and slender pillars[J]. Langmuir, 2004, 20(19): 8209-8213.
[37] [37] C W Extrand. Modeling of ultralyophobicity: Suspension of liquid drops by a single asperity[J]. Langmuir, 2005, 21(23): 10370-10374.
[38] [38] R N Wenzel. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem Research, 1936, 28(8): 988-994.
[39] [39] A B D Cassie, S Baxter. Wettability of porous surfaces[J]. Trans Faraday Soc, 1944, 40: 546-551.
Get Citation
Copy Citation Text
Lin Cheng, Zhong Minlin, Fan Peixun, Long Jiangyou, Gong Dingwei, Zhang Hongjun. Picosecond Laser Fabrication of Large-Area Surface Micro-Nano Lotus-Leaf Structures and Replication of Superhydrophobic Silicone Rubber Surfaces[J]. Chinese Journal of Lasers, 2014, 41(9): 903007
Category: laser manufacturing
Received: Mar. 17, 2014
Accepted: --
Published Online: Aug. 15, 2014
The Author Email: Cheng Lin (hellolincheng@hotmail.com)