Chinese Journal of Lasers, Volume. 43, Issue 8, 802007(2016)
Numerical Simulation of Residual Stress Field Induced in Round Rod Part Affected by Laser Parameters
[2] [2] Wang Ying, Kang Dachang. Experimental study on surface peening of pumping rod by rolling technology[J]. Hot Working Technology, 2004(6): 16-18.
[3] [3] Vasu A, Hu Y X , Grandhi R V. Differences in plasticity due to curvature in laser peened components[J]. Surface and Coatings Technology, 2013, 235: 648-656.
[4] [4] Gao Li, Zhang Yongkang. Experimental and numerical simulation of laser shock strengthening of Ni-Co alloy pole[J]. Laser Technology, 2006, 30(5): 507-510.
[5] [5] Chen Ruifang, Chen Yuxiao, Hua Yinqun. Geometrical effects on residual stress in TC4 titanium alloy subject to laser shock processing[J]. Journal of Jiangsu University (Natural Science Edition), 2011, 32(2): 190-194.
[7] [7] Zhang Xingquan, Zhang Yan, Duan Shiwei, et al. Numerical simulation of dynamic response of round rod subjected to laser shocking[J]. Chinese J Lasers, 2015, 42(9): 0903009.
[8] [8] Lai Zhilin, Wang Cheng, Li Yinghong, et al. Effect of laser shock peening and ultrasonic shot peening on fatigue property of 1Cr11Ni2W2MoV stainless steel[J]. Laser & Optoelectronics Progress, 2013, 50(5): 051403.
[10] [10] Ding K, Ye L. FEM simulation of two sided laser shock peening of thin sections of Ti-6Al-4V alloy[J]. Surface Engineering, 2003, 19(2): 127-133.
[11] [11] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.
[12] [12] Yang C H, Hodgson P D, Liu Q C, et al. Geometrical effects on residual stresses in 7075-T7451 aluminum alloy rods subject to laser shock peening[J]. Journal of Materials Processing Technology, 2008, 201(1): 303-309.
[13] [13] Hong X, Wang S B, Guo D H, et al. Confining medium and absorptive overlay: Their effects on a laser-induced shock wave[J]. Optics and Lasers in Engineering, 1998, 29(6): 447-455.
[14] [14] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]. Proceedings of the 7th International Symposium on Ballistics, 1983, 21: 541-547.
[15] [15] Fabbro R, Peyre P, Berthe L, et al. Physics and applications of laser-shock processing[J]. Journal of Laser Applications, 1998, 10(6): 265-279.
[18] [18] Hu Yongxiang. Research on the numerical simulation and impact effects of laser shock processing[D]. Shanghai: Shanghai Jiao Tong University, 2008.
[19] [19] Wei X L, Ling X. Numerical modeling of residual stress induced by laser shock processing[J]. Applied Surface Science, 2014, 301(20): 557-563.
[20] [20] Kim J H, Kim Y J, Kim J S. Effects of simulation parameters on residual stresses for laser shock peening finite element analysis[J]. Journal of Mechanical Science and Technology, 2013, 27(7): 2025-2034.
[21] [21] Luo K Y, Lu J Z, Wang Q W, et al. Residual stress distribution of Ti-6Al-4V alloy under different ns-LSP processing parameters[J]. Applied Surface Science, 2013, 285(19): 607-615.
[22] [22] Wang Cheng, Lai Zhilin, He Weifeng, et al. Effect of multi-impact on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel subject to laser shock processing[J]. Chinese J Lasers, 2014, 41(1): 0103001.
Get Citation
Copy Citation Text
Wang Jingxue, Zhang Yan, Zhang Xingquan, Qi Xiaoli, Pei Shanbao, Chen Bin. Numerical Simulation of Residual Stress Field Induced in Round Rod Part Affected by Laser Parameters[J]. Chinese Journal of Lasers, 2016, 43(8): 802007
Category: laser manufacturing
Received: Mar. 16, 2016
Accepted: --
Published Online: Aug. 10, 2016
The Author Email: Jingxue Wang (ww199720@163.com)