Journal of Inorganic Materials, Volume. 36, Issue 1, 61(2021)

Research on Machine Learning Based Model for Predicting the Impact Status of Laminated Glass

Yanran MENG1,2,3, Xinger WANG1,2,3,4, Jian YANG1,2,3、*, Han XU1,2,3, and Feng YUE1,2
Author Affiliations
  • 1School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 4Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
  • show less
    Figures & Tables(15)
    Diagram of impact tests equipment
    ROC curves of single input parameter (a) Outer layer; (b) Inner layer
    ROC curves of integrated input parameters (a) Outer layer; (b) Inner layer
    The network structure of KELM
    WOA optimization process
    WOA-KELM flow chart
    WOA optimization process
    WOA-KELM glass failure status prediction results
    SVM glass failure status prediction results
    LSSVM glass failure status prediction results
    • Table 1.

      夹层玻璃试件配置情况

      View table
      View in Article

      Table 1.

      夹层玻璃试件配置情况

      IDMaterialMake-up (o/m/i)Dimensional of glass/mmSupport conditionQuantity
      P01FTG/PVB/FTG8/1.52/81000 × 1000Edge clamped12
      P02FTG/PVB/FTG8/1.52/81000 × 1000Bolted connection6
      P03FTG/PVB/FTG8/1.52/81500 × 1500Edge clamped3
      P04FTG/PVB/FTG8/1.52/81500 × 1500Bolted connection3
      P05HSG/PVB/HSG8/1.52/81000 × 1000Bolted connection3
      P06FTG/PVB/FTG8/0.76/81000 × 1000Bolted connection3
      P07FTG/PVB/FTG8/3.04/81000 × 1000Bolted connection3
      P08FTG/PVB/FTG8/1.52/101000 × 1000Bolted connection3
      P09FTG/PVB/FTG6/1.52/101000 × 1000Bolted connection3
      P10FTG/PVB/HSG8/1.52/81000 × 1000Bolted connection3
      P11HSG/PVB/FTG8/1.52/81000 × 1000Bolted connection3
      S01ANG/SGP/FTG8/3/81000 × 1000Edge clamped3
      S02FTG/SGP/ANG8/3/81000 × 1000Edge clamped3
      S03FTG/SGP/FTG8/3/81000 × 1000Bolted connection6
      S04FTG/SGP/FTG8/3/81500 × 1500Bolted connection3
      S05HSG/SGP/FTG8/3/81000 × 1000Bolted connection3
      S06FTG/SGP/FTG8/5/81000 × 1000Bolted connection3
    • Table 2.

      试验数据库材料参数

      View table
      View in Article

      Table 2.

      试验数据库材料参数

      Material parameterFTGHSGANGPVBSGP
      Density/(kg·m-3)-2500.0-1100.00950.00
      Elasticity modulus/GPa-70.0-0.150.30
      Poission ratio-0.2-0.450.45
      Mean failure strength/MPa157.4104.042.0--
    • Table 3.

      破坏状态预测模型AUC值

      View table
      View in Article

      Table 3.

      破坏状态预测模型AUC值

      nInput parameterOuter layer state AUC (Ao n)Inner layer state AUC (Ai n)
      1Thickness of interlayer0.6050.571
      2Thickness of outer layer0.5160.537
      3Thickness of inner layer0.5110.546
      4Type of interlayer0.5730.576
      5Type of outer layer0.5730.515
      6Type of inner layer0.5630.559
      7Side length0.5160.507
      8Boundary condition0.5410.573
      9Peak kinetic energy0.6540.675
      10State of outer layer0.8730.513
      11State of inner layer0.4720.714
      12Multiple input0.9160.842
    • Table 4.

      仿真环境

      View table
      View in Article

      Table 4.

      仿真环境

      ItemDetailed settings
      Hardware
      CPUQuad-core intel core i7-4850HQ
      Frequency2.3 GHz
      RAM16GB 1600 MHz DDR3
      Hard drive500 GB
      Operating systemMacOS
    • Table 5.

      玻璃破坏状态预测结果

      View table
      View in Article

      Table 5.

      玻璃破坏状态预测结果

      ModelComputing time/msTrainingaccuracy/%Testingaccuracy/%
      WOA-KELM10.6293.8088.45
      SVM367.8792.8087.00
      LSSVM65.2889.2085.56
    Tools

    Get Citation

    Copy Citation Text

    Yanran MENG, Xinger WANG, Jian YANG, Han XU, Feng YUE. Research on Machine Learning Based Model for Predicting the Impact Status of Laminated Glass[J]. Journal of Inorganic Materials, 2021, 36(1): 61

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH PAPER

    Received: Apr. 9, 2020

    Accepted: --

    Published Online: Jan. 21, 2021

    The Author Email: Jian YANG (j.yang.1@sjtu.edu.cn)

    DOI:10.15541/jim20200187

    Topics