Journal of Semiconductors, Volume. 42, Issue 9, 092001(2021)
Synthesis of two-dimensional/one-dimensional heterostructures with tunable width
[1] T J Trentler, K M Hickman, S C Goel et al. Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science, 270, 1791(1995).
[2] R Yan, D Gargas, P Yang. Nanowire photonics. Nat Photon, 3, 569(2009).
[3] L X Zheng, M J O'Connell, S K Doorn et al. Ultralong single-wall carbon nanotubes. Nat Mater, 3, 673(2004).
[4] S Lei, L Ge, S Najmaei et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. Acs Nano, 8, 1263(2014).
[5] S M Poh, S J R Tan, X Zhao et al. Large area synthesis of 1D-MoSe2 using molecular beam epitaxy. Adv Mater, 29, 1605641(2017).
[6] R Qi, S Wang, M Wang et al. Towards well-defined MoS2 nanoribbons on a large scale. Chem Commun, 53, 9757(2017).
[7] S Li, Y C Lin, W Zhao et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat Mater, 17, 535(2018).
[8] W Huang, X Wang, X Ji et al. In-situ fabrication of Mo6S6-nanowire-terminated edges in monolayer molybdenum disulfide. Nano Res, 11, 5849(2018).
[9] Y Zhou, J Dong, H Li et al. Electronic transport properties of in-plane heterostructures constructed by MoS2 and WS2 nanoribbons. RSC Adv, 5, 66852(2015).
[10] W Zhou, G Yu, A N Rudenko et al. Tunable half-metallicity and edge magnetism of H-saturated InSe nanoribbons. Phys Rev Mater, 2, 114001(2018).
[11] K X Chen, Z Y Luo, D C Mo et al. WSe2 nanoribbons: new high-performance thermoelectric materials. Phys Chem Chem Phys, 18, 16337(2016).
[12] M Wu, J J Shi, M Zhang et al. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect. Nanotechnology, 29, 205708(2018).
[13] G Z Magda, X Jin, I Hagymasi et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature, 514, 608(2014).
[14] J J Wang, F F Cao, L Jiang et al. High performance photodetectors of individual InSe single crystalline nanowire. J Am Chem Soc, 131, 15602(2009).
[15] Y Yu, G Wang, Y Tan et al. Phase-controlled growth of one-dimensional Mo6Te6 nanowires and two-dimensional MoTe2 ultrathin films heterostructures. Nano Lett, 18, 675(2018).
[16] J Zhang, Y Wei, F Yao et al. SWCNT-MoS2-SWCNT vertical point heterostructures. Adv Mater, 29, 1604469(2017).
[17] D Jariwala, V K Sangwan, C C Wu et al. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. Proc Natl Acad Sci USA, 110, 18076(2013).
[18] Y Liu, X He, D Hanlon et al. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. Acs Nano, 10, 8821(2016).
[19] H Huang, W Huang, Z Yang et al. Strongly coupled MoS2 nanoflake-carbon nanotube nanocomposite as an excellent electrocatalyst for hydrogen evolution reaction. J Mater Chem A, 5, 1558(2017).
[20] Z Zhang, P Chen, X Duan et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science, 357, 788(2017).
[21] X Duan, C Wang, J C Shaw et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol, 9, 1024(2014).
[22] A Berkdemir, H R Gutierrez, A R Botello-Mendez et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci Rep, 3, 1755(2013).
[23] A M van der Zande, P Y Huang, D A Chenet et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater, 12, 554(2013).
Get Citation
Copy Citation Text
Di Wang, Zucheng Zhang, Bo Li, Xidong Duan. Synthesis of two-dimensional/one-dimensional heterostructures with tunable width[J]. Journal of Semiconductors, 2021, 42(9): 092001
Category: Articles
Received: Apr. 7, 2021
Accepted: --
Published Online: Sep. 15, 2021
The Author Email: