Journal of Semiconductors, Volume. 44, Issue 4, 040201(2023)
Recent progress and future prospect of novel multi-ion storage devices
Fig. 1. (Color online) (a) Long-term cycle performance of C@MoS2–xTex@C//graphite DIBs. Reproduced with permission[13], Copyright 2022, Elsevier. (b) EDS elemental mapping images of SHCS. (c) Cycling stability at 2 A/g of ACBC//SHCS PIHCs. Reproduced with permission[14], Copyright 2021, American Chemical Society. (d) EDS elemental mapping images of NPHCS@PPy. (e) Cycling performance at a current density of 1 A/g. Reproduced with permission[15], Copyright 2021, Frontiers. (f) TEM images of artificial CEI on graphite cathode after cycling after 5 cycles and 50 cycles. (g) Rate performance at different current density of AS and TS in KDIB. (h) Nyquist diagram. (i) Cycling performance of AS and TS. Reproduced with permission[16], Copyright 2022, Elsevier.
Fig. 2. (Color online) (a) Simplified illustration of the working principle of a dual-ion hybrid capacitor. Reproduced with permission[21], Copyright 2021, Elsevier. (b) Illustration of the bendable LIC device assembled with the FeSe2@CNF anode, the CNF@AC cathode, and P(VDF-HFP)-based GPE. (c) GCD curve at the status of flat and bending for 180° of the obtained LIC. Reproduced with permission[22], Copyright 2022, Wiley. (d) Schematic illustration of the photocharging process of photo-MIC using VO2/rGO photo electrode and AC counter electrode. (e) Galvanostatic measurements under dark and illuminated conditions (λ ≈ 455 nm, intensity ≈ 12 mW/cm2) of photo-MICs at specific currents of 1.62 A/g. Reproduced with permission[23], Copyright 2022, Wiley.
Get Citation
Copy Citation Text
Shijiang He, Zidong Wang, Zhijie Wang, Yong Lei. Recent progress and future prospect of novel multi-ion storage devices[J]. Journal of Semiconductors, 2023, 44(4): 040201
Category: Articles
Received: Jan. 3, 2023
Accepted: --
Published Online: Apr. 24, 2023
The Author Email: Zhijie Wang (wangzj@semi.ac.cn), Yong Lei (yong.lei@tu-ilmenau.de)