Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1000005(2024)
Research Progress of Single-Pixel Imaging Based on Deep Learning
[1] Studer V, Bobin J, Chahid M et al. Compressive fluorescence microscopy for biological and hyperspectral imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, E1679-E1687(2012).
[2] Olivieri L, Gongora J S T, Peters L et al. Hyperspectral terahertz microscopy via nonlinear ghost imaging[J]. Optica, 7, 186-191(2020).
[3] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012).
[4] Gong W L, Zhao C Q, Yu H et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016).
[5] Sun B, Edgar M P, Bowman R et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).
[6] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016).
[7] Yang Z H, Li G H, Yan R T et al. 3-D computational ghost imaging with extended depth of field for measurement[J]. IEEE Transactions on Instrumentation and Measurement, 68, 4906-4912(2019).
[8] Zhao H J, Li Y X, Jiang H Z et al. High-precision 3D-imaging technology under complex illumination[J]. Laser & Optoelectronics Progress, 60, 0811018(2023).
[9] Jiang W J, Yin Y K, Jiao J P et al. 2, 000, 000 fps 2D and 3D imaging of periodic or reproducible scenes with single-pixel detectors[J]. Photonics Research, 10, 2157-2164(2022).
[10] Li D Z, Zhou W S, Huang S Y et al. Multi-mode microscopic imaging technique based on single-pixel imaging principle[J]. Acta Optica Sinica, 43, 2111003(2023).
[11] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).
[12] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).
[13] Gatti A, Brambilla E, Bache M et al. Correlated imaging, quantum and classical[J]. Physical Review A, 70, 013802(2004).
[14] Valencia A, Scarcelli G, D’Angelo M et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).
[15] Zhai Y H, Chen X H, Zhang D et al. Two-photon interference with true thermal light[J]. Physical Review A, 72, 043805(2005).
[16] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).
[17] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).
[18] Sun M J, Yan S M, Wang S Y. Reconstruction algorithms for ghost imaging and single-pixel imaging[J]. Laser & Optoelectronics Progress, 59, 0200001(2022).
[19] Ferri F, Magatti D, Lugiato L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).
[20] Sun B Q, Welsh S S, Edgar M P et al. Normalized ghost imaging[J]. Optics Express, 20, 16892-16901(2012).
[21] Li M F, Zhang Y R, Luo K H et al. Time-correspondence differential ghost imaging[J]. Physical Review A, 87, 033813(2013).
[22] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).
[23] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).
[24] Zhang Z B, Ma X, Zhong J G. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 6225(2015).
[25] Barbastathis G, Ozcan A, Situ G. On the use of deep learning for computational imaging[J]. Optica, 6, 921-943(2019).
[26] Lyu M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017).
[27] He Y C, Wang G, Dong G X et al. Ghost imaging based on deep learning[J]. Scientific Reports, 8, 6469(2018).
[28] Rizvi S, Cao J, Zhang K Y et al. Improving imaging quality of real-time Fourier single-pixel imaging via deep learning[J]. Sensors, 19, 4190(2019).
[29] Zhang H, Duan D Y. Computational ghost imaging with compressed sensing based on a convolutional neural network[J]. Chinese Optics Letters, 19, 101101(2021).
[30] Shimobaba T, Endo Y, Nishitsuji T et al. Computational ghost imaging using deep learning[J]. Optics Communications, 413, 147-151(2018).
[31] Zhai X, Cheng Z D, Liang Z Y et al. Computational ghost imaging via adaptive deep dictionary learning[J]. Applied Optics, 58, 8471-8478(2019).
[32] Bian T, Yi Y X, Hu J L et al. A residual-based deep learning approach for ghost imaging[J]. Scientific Reports, 10, 12149(2020).
[33] Zhang H, Xia Y J, Duan D Y. Computational ghost imaging with deep compressed sensing[J]. Chinese Physics B, 30, 124209(2021).
[34] Jiang P F, Liu J L, Wu L et al. Fourier single pixel imaging reconstruction method based on the U-net and attention mechanism at a low sampling rate[J]. Optics Express, 30, 18638-18654(2022).
[35] Song H T, Nie X Y, Su H R et al. 0.8% Nyquist computational ghost imaging via non-experimental deep learning[J]. Optics Communications, 520, 128450(2022).
[36] Rizvi S, Cao J, Zhang K Y et al. DeepGhost: real-time computational ghost imaging via deep learning[J]. Scientific Reports, 10, 11400(2020).
[37] Hu H K, Sun S, Lin H Z et al. Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects[J]. Optics Express, 28, 37284-37293(2020).
[38] Moodley C, Forbes A. Super-resolved quantum ghost imaging[J]. Scientific Reports, 12, 10346(2022).
[39] Rizvi S, Cao J, Hao Q. Deep learning based projector defocus compensation in single-pixel imaging[J]. Optics Express, 28, 25134-25148(2020).
[40] Ma X Y, Wang C X. 3D Single-pixel imaging with active sampling patterns and learning based reconstruction[J]. Optics and Lasers in Engineering, 163, 107447(2023).
[41] Ni Y, Zhou D F, Yuan S et al. Color computational ghost imaging based on a generative adversarial network[J]. Optics Letters, 46, 1840-1843(2021).
[42] Liu H, Chen Y N, Zhang L et al. Color ghost imaging through the scattering media based on A-cGAN[J]. Optics Letters, 47, 569-572(2022).
[43] Qu G, Meng X F, Yin Y K et al. A demosaicing method for compressive color single-pixel imaging based on a generative adversarial network[J]. Optics and Lasers in Engineering, 155, 107053(2022).
[44] Huang W X, Wang F, Zhang X Y et al. Learning-based adaptive under-sampling for Fourier single-pixel imaging[J]. Optics Letters, 48, 2985-2988(2023).
[45] Zhou C, Liu X, Feng Y S et al. Real-time physical compression computational ghost imaging based on array spatial light field modulation and deep learning[J]. Optics and Lasers in Engineering, 156, 107101(2022).
[46] Wang F, Wang H, Wang H C et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).
[47] Zhu R G, Yu H, Tan Z J et al. Ghost imaging based on Y-net: a dynamic coding and decoding approach[J]. Optics Express, 28, 17556-17569(2020).
[48] Wu H, Wang R Z, Zhao G P et al. Sub-Nyquist computational ghost imaging with deep learning[J]. Optics Express, 28, 3846-3853(2020).
[49] Wu H, Wang R Z, Zhao G P et al. Deep-learning denoising computational ghost imaging[J]. Optics and Lasers in Engineering, 134, 106183(2020).
[50] Gao Z Q, Cheng X M, Chen K et al. Computational ghost imaging in scattering media using simulation-based deep learning[J]. IEEE Photonics Journal, 12, 6803115(2020).
[51] Hoshi I, Shimobaba T, Kakue T et al. Single-pixel imaging using a recurrent neural network combined with convolutional layers[J]. Optics Express, 28, 34069-34078(2020).
[52] Shang R B, Hoffer-Hawlik K, Wang F et al. Two-step training deep learning framework for computational imaging without physics priors[J]. Optics Express, 29, 15239-15254(2021).
[53] Li F Q, Zhao M, Tian Z M et al. Compressive ghost imaging through scattering media with deep learning[J]. Optics Express, 28, 17395-17408(2020).
[54] Yang X, Yu Z Y, Xu L et al. Underwater ghost imaging based on generative adversarial networks with high imaging quality[J]. Optics Express, 29, 28388-28405(2021).
[55] Zhu Y L, She R B, Liu W Q et al. Deep learning optimized terahertz single-pixel imaging[J]. IEEE Transactions on Terahertz Science and Technology, 12, 165-172(2022).
[56] Higham C F, Murray-Smith R, Padgett M J et al. Deep learning for real-time single-pixel video[J]. Scientific Reports, 8, 2369(2018).
[57] Guan Y Q, Yan Q R, Yang S T et al. Single photon counting compressive imaging based on a sampling and reconstruction integrated deep network[J]. Optics Communications, 459, 124923(2020).
[58] Gao W, Yan Q R, Zhou H L et al. Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning[J]. Optics Express, 29, 5552-5566(2021).
[59] Yang X, Jiang X D, Jiang P F et al. S2O-FSPI: Fourier single pixel imaging via sampling strategy optimization[J]. Optics & Laser Technology, 166, 109651(2023).
[60] Tian Y, Fu Y, Zhang J. Local-enhanced transformer for single-pixel imaging[J]. Optics Letters, 48, 2635-2638(2023).
[61] Mur A L, Peyrin F, Ducros N. Deep expectation-maximization for single-pixel image reconstruction with signal-dependent noise[J]. IEEE Transactions on Computational Imaging, 8, 759-769(2022).
[62] Sun S D, Yan Q R, Zheng Y J et al. Single pixel imaging based on generative adversarial network optimized with multiple prior information[J]. IEEE Photonics Journal, 14, 8538110(2022).
[63] Zhang Z B, Li X, Zheng S J et al. Image-free classification of fast-moving objects using “learned” structured illumination and single-pixel detection[J]. Optics Express, 28, 13269-13278(2020).
[64] Bu T, Kumar S, Zhang H et al. Single-pixel pattern recognition with coherent nonlinear optics[J]. Optics Letters, 45, 6771-6774(2020).
[65] Cao J N, Zuo Y H, Wang H H et al. Single-pixel neural network object classification of sub-Nyquist ghost imaging[J]. Applied Optics, 60, 9180-9187(2021).
[66] Yao M H, Zheng S J, Hu Y H et al. Single-pixel moving object classification with differential measuring in transform domain and deep learning[J]. Photonics, 9, 202(2022).
[67] Yang Z, Bai Y M, Sun L D et al. SP-ILC: concurrent single-pixel imaging, object location, and classification by deep learning[J]. Photonics, 8, 400(2021).
[68] Bian L H, Wang H Y, Zhu C L et al. Image-free multi-character recognition[J]. Optics Letters, 47, 1343-1346(2022).
[69] Liu H Y, Bian L H, Zhang J. Image-free single-pixel segmentation[J]. Optics & Laser Technology, 157, 108600(2023).
[70] Meng W W, Shi D F, Guo Z J et al. Image-free multi-motion parameters measurement by single-pixel detection[J]. Optics Communications, 535, 129345(2023).
[71] Wang S Y, Li L J, Yu Z J et al. Image-free target classification with semiactive laser detection system[J]. IEEE Sensors Journal, 22, 23088-23094(2022).
[72] Hong Y, Li Y X, Dai C et al. Image-free target identification using a single-point single-photon LiDAR[J]. Optics Express, 31, 30390-30401(2023).
[73] Limbacher B, Schoenhuber S, Wenclawiak M et al. Terahertz optical machine learning for object recognition[J]. APL Photonics, 5, 126103(2020).
[74] Yao J H, Jiao S M, Wang X K et al. Fast terahertz image classification with a single-pixel detector[J]. Optics Communications, 550, 130016(2024).
[75] Lempitsky V, Vedaldi A, Ulyanov D. Deep image prior[C], 9446-9454(2018).
[77] Liu J M, Sun Y, Xu X J et al. Image restoration using total variation regularized deep image prior[C], 7715-7719(2019).
[78] Zhou K C, Horstmeyer R. Diffraction tomography with a deep image prior[J]. Optics Express, 28, 12872-12896(2020).
[79] Wang F, Bian Y M, Wang H C et al. Phase imaging with an untrained neural network[J]. Light, Science & Applications, 9, 77(2020).
[80] Wang F, Wang C L, Chen M L et al. Far-field super-resolution ghost imaging with a deep neural network constraint[J]. Light, Science & Applications, 11, 1(2022).
[81] Li Z C, Huang J, Shi D F et al. Single-pixel imaging with untrained convolutional autoencoder network[J]. Optics & Laser Technology, 167, 109710(2023).
[82] Wang C H, Li H Z, Bie S H et al. Single-pixel hyperspectral imaging via an untrained convolutional neural network[J]. Photonics, 10, 224(2023).
[83] Chang X Y, Wu Z, Li D Y et al. Self-supervised learning for single-pixel imaging via dual-domain constraints[J]. Optics Letters, 48, 1566-1569(2023).
[84] Liu S P, Meng X F, Yin Y K et al. Computational ghost imaging based on an untrained neural network[J]. Optics and Lasers in Engineering, 147, 106744(2021).
[85] Li J S, Wu B, Liu T Y et al. URNet: high-quality single-pixel imaging with untrained reconstruction network[J]. Optics and Lasers in Engineering, 166, 107580(2023).
[86] Li X L, Chen Y F, Tian T et al. Part-based image-loop network for single-pixel imaging[J]. Optics & Laser Technology, 168, 109917(2024).
[87] Peng Y, Xiao Y, Chen W. High-fidelity and high-robustness free-space ghost transmission in complex media with coherent light source using physics-driven untrained neural network[J]. Optics Express, 31, 30735-30749(2023).
[88] Wang Q, Mi J S, Shi H R et al. Ghost imaging by single-layer neural network based on forward physical model[J]. IEEE Transactions on Instrumentation and Measurement, 72, 4505310(2023).
[89] Wang F, Wang C L, Deng C J et al. Single-pixel imaging using physics enhanced deep learning[J]. Photonics Research, 10, 104-110(2021).
[90] Deng Y Q, She R B, Liu W Q et al. High-efficiency terahertz single-pixel imaging based on a physics-enhanced network[J]. Optics Express, 31, 10273-10286(2023).
[91] Tian Y, Fu Y, Zhang J. Joint supervised and unsupervised deep learning method for single-pixel imaging[J]. Optics & Laser Technology, 162, 109278(2023).
[92] Zhang X Y, Deng C J, Wang C L et al. VGenNet: variable generative prior enhanced single pixel imaging[J]. ACS Photonics, 10, 2363-2373(2023).
Get Citation
Copy Citation Text
Qi Wang, Jiashuai Mi. Research Progress of Single-Pixel Imaging Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1000005
Category: Reviews
Received: Nov. 10, 2023
Accepted: Jan. 26, 2024
Published Online: Apr. 29, 2024
The Author Email: Qi Wang (wangqi@ise.neu.edu.cn)
CSTR:32186.14.LOP232464