Journal of Terahertz Science and Electronic Information Technology , Volume. 23, Issue 3, 202(2025)

Terahertz 3D human imaging based on different echo signal models

HAN Jiayue1,2, HE Danping2, DUO Hao3、*, CHEN Ben2, GUAN Ke1,2, and DOU Jianwu4
Author Affiliations
  • 1State Key Laboratory of Advanced Rail Autonomous Operation, Beijing 100044, China
  • 2School of Electronic Information Engineering, Beijing Jiaotong University, Beijing 100044, China
  • 3CTTL-Terminals, China Academy of Information and Communications Technology, Beijing 100191, China
  • 4State Key Laboratory of Mobile Network and Mobile Multimedia Technology, ZTE Corporation, Shenzhen Guangdong 518055, China
  • show less
    References(18)

    [1] [1] LIU Mengyu, ZHANG Yang, JIN Yasheng, et al. Towards near-field communications for 6G: challenges and opportunities[J]. ZTE Communications, 2024, 22(1): 3-15. doi: 10.12142/ZTECOM.202401002.

    [5] [5] THOMAS K, GUAN K, MOLISCH A, et al. Millimeter wave and THz propagation channel modeling for high-data rate railway connectivity—status and open challenges[J]. ZTE Communications, 2016, 14(S1): 7-13. doi: 10.3969/j.issn.1673-5188.2016.S1.002.

    [8] [8] GRAY D, YANG R, YARDLEY H, et al. PLIS: an airborne polarimetric L-band interferometric synthetic aperture radar[C]//2011 the 3rd International Asia-Pacific Conference on Synthetic Aperture Radar(APSAR). Seoul, Korea(South): IEEE, 2011: 1-4.

    [9] [9] ZHU X, BAMLER R. Tomographic SAR inversion by l1-norm regularization—the compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839-3846. doi: 10.1109/TGRS.2010.2048117.

    [10] [10] GAO Jinkun, DENG Bin, QIN Yuliang, et al. An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(11): 5065-5074. doi: 10.1109/tmtt.2018.2859269.

    [11] [11] SMITH J W, YANIK M E, TORLAK M. Near-field MIMO-ISAR millimeter-wave imaging[C]//2020 IEEE Radar Conference (RadarConf20). Florence, Italy: IEEE, 2020: 1-6. doi: 10.1109/RadarConf2043947.2020.9266412.

    [12] [12] LI Xiangping, LI Rui, CHEN Jialin, et al. Analysis of the composite electromagnetic scattering problem based on MOM-POJOURNAL method[J]. Journal of Naval Aviation University, 2013, 28(4): 346-350.

    [14] [14] LI W, HUANG C W, ALEXANDROPOULOS G C, et al. Tri-polarized holographic MIMO surfaces for near-field communications: channel modeling and precoding design[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8828-8842. doi: 10.1109/twc.2023.3266298.

    [15] [15] ADANA F S, DIEGO I G, BLANCO O G, et al, Method based on physical optics for the computation of the radar cross section including diffraction and double effects of metallic and absorbing bodies modeled with parametric surfaces[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(12): 3295-3303. doi: 10.1109/TAP.2004.836444.

    [16] [16] HE Danping, GUAN Ke, YAN Dong, et al. Physics and AI-based digital twin of multi-spectrum propagation characteristics for communication and sensing in 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(11): 3461-3473. doi: 10.1109/JSAC.2023.3310108.

    [17] [17] HE Danping, AI Bo, GUAN Ke, et al. The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: a tutorial[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 10-27. doi: 10.1109/COMST.2018.2865724.

    [18] [18] DEGLI-ESPOSTI V, BERTONI H L. Evaluation of the role of diffuse scattering in urban microcellular propagation[C]//Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference(Cat. No.99CH36324). Amsterdam, Netherlands: IEEE, 1999: 1392-1396. doi: 10.1109/vetecf.1999.801491.

    [19] [19] DEGLI-ESPOSTI V. A diffuse scattering model for urban propagation prediction[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(7): 1111-1113. doi: 10.1109/8.933491.

    [20] [20] DEGLI-ESPOSTI V, FUSCHINI F, VITUCCI E M, et al. Measurement and modelling of scattering from buildings[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(1): 143-153. doi: 10.1109/TAP.2006.888422.

    [21] [21] SMITH J W, TORLAK M. Efficient 3-D near-field MIMO-SAR imaging for irregular scanning geometries[J]. IEEE Access, 2022(10): 10283-10294. doi: 10.1109/ACCESS.2022.3145370.

    [22] [22] SMITH J W, YANIK M E, TORLAK M. Near-field MIMO-ISAR millimeter-wave imaging[C]//2020 IEEE Radar Conference(RadarConf20). Florence, Italy: IEEE, 2020: 1-6. doi: 10.1109/RadarConf2043947.2020.9266412.

    [25] [25] BENNETT D B, LI W, TAYLOR Z D, et al. Stratified media model for terahertz reflectometry of the skin[J]. IEEE Sensors Journal, 2011, 11(5): 1253-1262. doi: 10.1109/JSEN.2010.2088387.

    [26] [26] WANG J, LINDLEY-HATCHER H, CHEN X Q. THz sensing of human skin: a review of skin modeling approaches[J]. Sensors, 2021, 21(11): 3624. doi: 10.3390/s21113624.

    Tools

    Get Citation

    Copy Citation Text

    HAN Jiayue, HE Danping, DUO Hao, CHEN Ben, GUAN Ke, DOU Jianwu. Terahertz 3D human imaging based on different echo signal models[J]. Journal of Terahertz Science and Electronic Information Technology , 2025, 23(3): 202

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 27, 2024

    Accepted: Jun. 5, 2025

    Published Online: Jun. 5, 2025

    The Author Email: DUO Hao (duohao@caict.ac.cn)

    DOI:10.11805/tkyda2024406

    Topics