Acta Physica Sinica, Volume. 69, Issue 15, 154206-1(2020)

Reciprocal waveguide coupled mode theory

Yun-Tian Chen1,2, Jing-Wei Wang1, Wei-Jin Chen1, and Jing Xu1,2、*
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    Figures & Tables(7)
    Symmetry relations between the forward and backward propagating modes: (a) Chiral symmetry; (b) time reversal symmetry; (c) parity symmetry.
    Real part of effective mode indices versus : (a) in core layer 1 and in core layer 2; (b) in core layer 1 and in core layer 2.
    Real part and imaginary part of effective mode indices versus : (a), (c) Real part of effective mode indices ; (b), (d) imaginary part of effective mode indices .
    Anisotropic waveguide: (a) The schematic of elliptical waveguide; (b) the real (red line) and imaginary (black line) part of effective modal indices, calculated from fullwave simulation using finite element method, as a function of ; (c) real part of effective mode indices ; (d) imaginary part of effective mode indices ; (e)−(h) the real/imaginary part ofobtained from fullwave simulation is shown for the modes
    • Table 1. Symmetric relation of original field and adjoint field in the reciprocal waveguides with

      View table
      View in Article

      Table 1. Symmetric relation of original field and adjoint field in the reciprocal waveguides with

      $\beta_i$对应的模式 $-\beta_i$对应的模式
      $({\bar{{L}}}, {\bar{{B}}})$$\left[\beta_i, {{\phi}}_i\right]$$\left[-\beta_i, {{\psi}}_i\right]$
      $({\bar{{L}}}^{\rm{a}}, {\bar{{B}}}^{\rm{a}})$$\left[\beta_i, {{\psi}}_i\right]$$\left[-\beta_i, {{\phi}}_i\right]$
    • Table 2.

      Symmetry relations of original field and adjoint field in the reciprocal waveguides.

      互易波导中原始场和伴随场之间的对称关系

      View table
      View in Article

      Table 2.

      Symmetry relations of original field and adjoint field in the reciprocal waveguides.

      互易波导中原始场和伴随场之间的对称关系

      对称关系算符对称性关系约束条件
      手征对称${\sigma}$${{{\psi}}}_i({{r}}) = {\bar{\sigma}}{{{\phi}}}_i({{r}})$${{{\varepsilon}}}_{\rm r}^{zt} = {{{\varepsilon}}}_{\rm r}^{tz} = 0$, ${{{\mu}}}_{\rm r}^{zt} = {{{\mu}}}_{\rm r}^{tz} = 0$${\bar{ \chi}} = 0$
      时间反演对称${\cal{T}}$${{{\psi}}}_i({{r}}) = {\bar{\sigma}}({{{\phi}}}_i({{r}}))^*$${\bar{{{\varepsilon}}}}_{\rm r}$, ${\bar{{{\mu}}}}_{\rm r}$${\bar{ \chi}}$是实数
      宇称对称${\cal{P}}$${{{\psi}}}_i({{r}}) = {\bar{\sigma}}{{{\phi}}}_i(-{{r}})$${\bar{{{\varepsilon}}}}_{\rm r}({{r}}) = {\bar{{{\varepsilon}}}}_{\rm r}(-{{r}})$, ${\bar{{{\mu}}}}_{\rm r}({{r}}) = {\bar{{{\mu}}}}_{\rm r}(-{{r}})$${\bar{ \chi}}({{r}}) = -{\bar{ \chi}}(-{{r}})$
    • Table 3. Comparison between CCMT, GCMT and GCMF.

      View table
      View in Article

      Table 3. Comparison between CCMT, GCMT and GCMF.

      模式耦合理论传统模式耦合理论(CCMT)手征对称模式耦合理论(GCMT)广义模式耦合理论(GCMF)
      耦合模式展开式形式$\varPhi =\displaystyle \sum a_i\phi _i$$\varPhi = \displaystyle\sum a_i\phi _i$$\varPhi = \displaystyle\sum a_i\phi _i ^+ +b_i \psi _i ^-$
      守恒量光功率守恒 $\nabla \left({{{{E}}} _1 \times {{{H}}} _2 ^{\ast}} + {{{E}}} _2 ^{\ast} \times {{{H}}}_1\right) = 0$作用量守恒 $\nabla \left({{{{E}}} _1 \times {{{H}}} _2 } + {{{E}}} _2 \times {{{H}}}_1\right) = 0$作用量守恒 $\nabla \left({{{{E}}} _1 \times {{{H}}} _2 } + {{{E}}} _2 \times {{{H}}}_1\right) = 0$
      测试函数$\phi _j ^{\ast} $$\sigma \phi _j$$ \psi _j ^+$, $\psi _j ^-$
      本征方程${\bar{{L}}}{{\phi}}_i = \beta_i {\bar{{B}}}{{\phi}}_i $${\bar{{L}}}{{\phi}}_i = \beta_i {\bar{{B}}}{{\phi}}_i $${\bar{{L}}}{{\phi}}_i = \beta_i {\bar{{B}}}{{\phi}}_i$
      测试函数进行测试$\displaystyle\iiint \phi _j ^{\ast} [{\bar{{L} } }{{\phi} }_i-\beta_i {\bar{{B} } }{{\phi} }_i]{\rm{d} }v \!=\! 0$$\displaystyle\iiint \sigma \phi _j [{\bar{{L} } }{{\phi} }_i-\beta_i {\bar{{B} } }{{\phi} }_i]{\rm{d} }v \!=\! 0$$\displaystyle\iiint \psi _j \cdot [{\bar{{L} } }{{\phi} }_i \!-\! \beta_i {\bar{{B} } }{{\phi} }_i]{\rm{d} }v \!=\! 0$
    Tools

    Get Citation

    Copy Citation Text

    Yun-Tian Chen, Jing-Wei Wang, Wei-Jin Chen, Jing Xu. Reciprocal waveguide coupled mode theory[J]. Acta Physica Sinica, 2020, 69(15): 154206-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 9, 2020

    Accepted: --

    Published Online: Dec. 30, 2020

    The Author Email:

    DOI:10.7498/aps.69.20200194

    Topics