Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 10, 1423(2023)

Super-resolution image reconstruction based on convolutional sparse coding and generative adversarial networks

Jun-sen DU1, Jie-long GUO2,3、*, Hui YU2,3, and Xian WEI2,3
Author Affiliations
  • 1School of Advanced Manufacturing,Fuzhou University,Quanzhou 362000,China
  • 2Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350108,China
  • 3Quanzhou Institute of Equipment Manufacturing,Haixi Institutes,Chinese Academy of Sciences,Quanzhou 362000,China
  • show less
    Figures & Tables(11)
    Overall structure of the model
    Convolutional sparse coding module
    Reconstruction module
    Generator structure based on convolutional sparse coding
    Discriminant network structure
    PSNR results for different number of iterations
    SSIM results for different number of iterations
    2×super-resolution image reconstruction results of each algorithm.(a)High-resolution original images;(b)Bicubic;(c)SRGAN;(d)EDSR;(e)ESRGAN;(f)Ours.
    4×super-resolution image reconstruction results of each algorithm.(a)High-resolution original images;(b)Bicubic;(c)SRGAN;(d)EDSR;(e)ESRGAN;(f)Ours.
    • Table 1. Average PSNR,SSIM and LPIPS values for each algorithm for ×2 magnification

      View table
      View in Article

      Table 1. Average PSNR,SSIM and LPIPS values for each algorithm for ×2 magnification

      算法指标Set5Set14BSD100Urban100
      BicubicPSNR30.420 326.802 526.472 324.158 3
      SSIM0.899 20.852 40.796 30.787 7
      LPIPS0.172 10.142 60.230 70.194 3
      SRGANPSNR30.903 028.137 027.845 525.819 6
      SSIM0.900 60.791 70.832 60.812 1
      LPIPS0.027 60.054 20.094 50.071 8
      EDSRPSNR31.900 228.258 328.101 626.001 2
      SSIM0.896 80.828 70.828 70.810 1
      LPIPS0.037 10.061 20.100 40.079 8
      ESRGANPSNR32.230 128.923 928.317 026.702 5
      SSIM0.901 10.845 50.835 00.823 1
      LPIPS0.020 70.058 60.083 60.068 8
      OursPSNR32.074 329.519 128.632 327.635 0
      SSIM0.907 10.864 00.857 90.875 9
      LPIPS0.016 30.041 40.068 30.062 1
    • Table 2. Average PSNR,SSIM and LPIPS values for each algorithm for ×4 magnification

      View table
      View in Article

      Table 2. Average PSNR,SSIM and LPIPS values for each algorithm for ×4 magnification

      算法指标Set5Set14BSD100Urban100
      BicubicPSNR26.998 125.251 323.125 122.951 7
      SSIM0.765 10.660 80.703 10.691 6
      LPIPS0.310 20.392 70.421 90.312 1
      SRGANPSNR27.316 526.572 625.006 922.458 3
      SSIM0.793 80.702 80.727 80.693 3
      LPIPS0.169 80.235 60.241 40.221 4
      EDSRPSNR27.702 626.231 926.031 523.052 6
      SSIM0.800 70.761 20.753 70.701 5
      LPIPS0.172 40.211 90.264 60.251 7
      ESRGANPSNR29.502 127.045 226.219 223.173 9
      SSIM0.841 60.771 00.732 10.721 2
      LPIPS0.153 20.181 20.191 80.190 2
      OursPSNR30.345 227.991 827.302 424.235 9
      SSIM0.851 00.817 30.764 10.772 5
      LPIPS0.113 00.163 00.185 40.170 9
    Tools

    Get Citation

    Copy Citation Text

    Jun-sen DU, Jie-long GUO, Hui YU, Xian WEI. Super-resolution image reconstruction based on convolutional sparse coding and generative adversarial networks[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(10): 1423

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Dec. 6, 2022

    Accepted: --

    Published Online: Oct. 25, 2023

    The Author Email: Jie-long GUO (gjl@fjirsm.ac.cn)

    DOI:10.37188/CJLCD.2022-0406

    Topics