Journal of Synthetic Crystals, Volume. 52, Issue 6, 1086(2023)
Research Progress of 3D Collector for Lithium Metal Battery
[1] [1] WU J Y, JU Z Y, ZHANG X, et al. Gradient design for high-energy and high-power batteries[J]. Advanced Materials, 2022, 34(29): 2202780.
[2] [2] GAO X, ZHENG X L, TSAO Y, et al. All-solid-state lithium-sulfur batteries enhanced by redox mediators[J]. Journal of the American Chemical Society, 2021, 143(43): 18188-18195.
[3] [3] ZHENG Z J, SU Q, ZHANG Q, et al. Low volume change composite lithium metal anodes[J]. Nano Energy, 2019, 64: 103910.
[4] [4] CHEN L, LI W X, FAN L Z, et al. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries[J]. Advanced Functional Materials, 2019, 29(28): 1901047.
[5] [5] KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279.
[6] [6] WOOD K, NOKED M, DASGUPTA N. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior[J]. ACS Energy Letters, 2017, 2(3): 664-672.
[7] [7] LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510.
[8] [8] FANG C C, LU B Y, PAWAR G, et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries[J]. Nature Energy, 2021, 6(10): 987-994.
[9] [9] ZHANG X, ZHANG Q M, WANG X G, et al. An extremely simple method for protecting lithium anodes in Li-O2 batteries[J]. Angewandte Chemie International Edition, 2018, 57(39): 12814-12818.
[10] [10] HU J L, TIAN J, LI C L. Nanostructured carbon nitride polymer-reinforced electrolyte to enable dendrite-suppressed lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(13): 11615-11625.
[11] [11] WANG T S, LIU X B, ZHAO X D, et al. Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries[J]. Advanced Functional Materials, 2020, 30(16): 2000786.
[12] [12] KOZEN A C, LIN C F, PEARSE A J, et al. Next-generation lithium metal anode engineering via atomic layer deposition[J]. ACS Nano, 2015, 9(6): 5884-5892.
[13] [13] KE X, LIANG Y H, OU L H, et al. Surface engineering of commercial Ni foams for stable Li metal anodes[J]. Energy Storage Materials, 2019, 23: 547-555.
[14] [14] LIU F F, XU R, HU Z X, et al. Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode[J]. Small, 2019, 15(5): 1803734.
[15] [15] SHEN F, ZHANG F, ZHENG Y J, et al. Direct growth of 3D host on Cu foil for stable lithium metal anode[J]. Energy Storage Materials, 2018, 13: 323-328.
[16] [16] YANG G H, CHEN J D, XIAO P T, et al. Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode[J]. Journal of Materials Chemistry A, 2018, 6(21): 9899-9905.
[17] [17] LU Z Y, LIANG Q H, WANG B, et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes[J]. Advanced Energy Materials, 2019, 9(7): 1803186.
[19] [19] FENG Y Y, ZHANG C F, LI B, et al. Low-volume-change, dendrite-free lithium metal anodes enabled by lithophilic 3D matrix with LiF-enriched surface[J]. Journal of Materials Chemistry A, 2019, 7(11): 6090-6098.
[20] [20] HOU G M, REN X H, MA X X, et al. Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge[J]. Journal of Power Sources, 2018, 386: 77-84.
[21] [21] LIU Y Y, ZHU Y Y, CUI Y. Challenges and opportunities towards fast-charging battery materials[J]. Nature Energy, 2019, 4(7): 540-550.
[22] [22] CHEN K, PATHAK R, GURUNG A, et al. A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes[J]. Journal of Materials Chemistry A, 2020, 8(4): 1911-1919.
[23] [23] DENG W, LIANG S S, ZHOU X F, et al. Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode[J]. Journal of Materials Chemistry A, 2019, 7(11): 6267-6274.
[24] [24] PEI F, ANG F, YE W B, et al. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries[J]. ACS Nano, 2019, 13(7): 8337-8346.
[25] [25] DUAN H, ZHANG J, XIANG C, et al. Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries[J]. Journal of the American Chemical Society, 2018, 140(51): 18051-18057.
[26] [26] WU N, ZHANG Q Y, GUO Y J, et al. Boron-doped three-dimensional MXene host for durable lithium-metal anode[J]. Rare Metals, 2022, 41(7): 2217-2222.
[27] [27] LIU T C, LIN Z Z, WANG D, et al. Aluminum electrolysis derivative spent cathodic carbon for dendrite-free Li metal anode[J]. Materials Today Energy, 2020, 17: 100465.
[29] [29] NIU C J, PAN H L, XU W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology, 2019, 14(6): 594-601.
[30] [30] ZHANG R, CHEN X R, CHEN X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2017, 56(27): 7764-7768.
[31] [31] LIU L, YIN Y X, LI J Y, et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes[J]. Advanced Materials, 2018, 30(10): 1706216.
[32] [32] WU H L, ZHANG Y B, DENG Y Q, et al. A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes[J]. Science China Materials, 2019, 62(1): 87-94.
[33] [33] LI K, HU Z Y, MA J Z, et al. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Advanced Materials, 2019, 31(33): 1902399.
[34] [34] JIN C B, SHENG O W, LUO J M, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy, 2017, 37: 177-186.
[35] [35] YUN Q B, HE Y B, LV W, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes[J]. Advanced Materials, 2016, 28(32): 6932-6939.
[36] [36] ZHAO H, LEI D N, HE Y B, et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector[J]. Advanced Energy Materials, 2018, 8(19): 1800266.
[37] [37] LIU H, WANG E R, ZHANG Q, et al. Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition[J]. Energy Storage Materials, 2019, 17: 253-259.
[38] [38] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6(1): 1-9.
[39] [39] LIN K, LI T, CHIANG S W, et al. Facile synthesis of ant-nest-like porous duplex copper as deeply cycling host for lithium metal anodes[J]. Small, 2020, 16(37): e2001784.
[40] [40] ADAIR K R, IQBAL M, WANG C H, et al. Towards high performance Li metal batteries: nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes[J]. Nano Energy, 2018, 54: 375-382.
[41] [41] ZHANG D, DAI A, WU M, et al. Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries[J]. ACS Energy Letters, 2020, 5(1): 180-186.
[44] [44] LIU T C, CHEN S Q, SUN W W, et al. Lithiophilic vertical cactus-like framework derived from Cu/Zn-based coordination polymer through in situ chemical etching for stable lithium metal batteries[J]. Advanced Functional Materials, 2021, 31(14): 2008514.
[45] [45] DENG W, ZHU W H, ZHOU X F, et al. Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity[J]. Energy Storage Materials, 2018, 15: 266-273.
[47] [47] YUE X Y, LI X L, BAO J, et al. “Top-down” Li deposition pathway enabled by an asymmetric design for Li composite electrode[J]. Advanced Energy Materials, 2019, 9(35): 1901491.
[48] [48] XIANG J W, YUAN L X, SHEN Y, et al. Improved rechargeability of lithium metal anode via controlling lithium-ion flux[J]. Advanced Energy Materials, 2018, 8(36): 1802352.
[49] [49] LE T, YANG C Q, LIANG Q H, et al. A fishing-net-like 3D host for robust and ultrahigh-rate lithium metal anodes[J]. Small, 2021, 17(11): e2007231.
[50] [50] NAN Y, LI S M, SHI Y Z, et al. Gradient-distributed nucleation seeds on conductive host for a dendrite-free and high-rate lithium metal anode[J]. Small, 2019, 15(45): 1903520.
[51] [51] YUN J, PARK B K, WON E S, et al. Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-metal anode[J]. ACS Energy Letters, 2020, 5(10): 3108-3114.
[52] [52] ZHENG H F, ZHANG Q F, CHEN Q L, et al. 3D lithiophilic-lithiophobic-lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode[J]. Journal of Materials Chemistry A, 2019, 8(1): 313-322.
[53] [53] YUN J, WON E S, SHIN H S, et al. Efficient and robust lithium metal electrodes enabled by synergistic surface activation-passivation of copper frameworks[J]. Journal of Materials Chemistry A, 2019, 7(40): 23208-23215.
[54] [54] LIU H, DI J, WANG P, et al. A novel design of 3D carbon host for stable lithium metal anode[J]. Carbon Energy, 2022, 4(4): 654-664.
[55] [55] CAO W Z, CHEN W M, LU M, et al. In situ generation of Li3N concentration gradient in 3D carbon-based lithium anodes towards highly-stable lithium metal batteries[J]. Journal of Energy Chemistry, 2023, 76: 648-656.
[56] [56] ZHANG S, DENG W, ZHOU X, et al. Controlled lithium plating in three-dimensional hosts through nucleation overpotential regulation toward high-areal-capacity lithium metal anode[J]. Materials Today Energy, 2021, 21: 100770.
[57] [57] LIU Y C, YUAN B Y, SUN C, et al. Ultralow-expansion lithium metal composite anode via gradient framework design[J]. Advanced Functional Materials, 2022, 32(35): 2202771.
[58] [58] LI T, GU S C, CHEN L K, et al. Bidirectional lithiophilic gradients modification of ultralight 3D carbon nanofiber host for stable lithium metal anode[J]. Small, 2022, 18(33): 2203273.
Get Citation
Copy Citation Text
YU Lei, WANG Ruijuan, TIAN Li, YANG Li. Research Progress of 3D Collector for Lithium Metal Battery[J]. Journal of Synthetic Crystals, 2023, 52(6): 1086
Category:
Received: Dec. 19, 2022
Accepted: --
Published Online: Aug. 13, 2023
The Author Email:
CSTR:32186.14.