Laser-produced plasma as a bright, point-like, pulse source of X-ray radiation in the energy range from 0.1 to 50 keV has been actively investigated in the past decades[
High Power Laser Science and Engineering, Volume. 8, Issue 2, 02000e26(2020)
Clean source of soft X-ray radiation formed in supersonic Ar gas jets by high-contrast femtosecond laser pulses of relativistic intensity
In this work, we optimized a clean, versatile, compact source of soft X-ray radiation
1 Introduction
Laser-produced plasma as a bright, point-like, pulse source of X-ray radiation in the energy range from 0.1 to 50 keV has been actively investigated in the past decades[
The point is that for most of practical applications the criterion of plasma X-ray source ‘purity’ and its high repetition frequency becomes designating. Since accelerated corpuscular beams create a noise background on a detector, it prevents obtaining of a high-quality image of an investigated object. Thus, a solution for the problem of generating a clean X-ray source in a laser-produced plasma can be found by optimization of the laser–matter interaction conditions, which implies selecting such conditions and geometry of an experiment when the most part of the main laser pulse energy converts to X-ray radiation, and processes of the accelerated corpuscular beams formation proceed weakly, or do not proceed at all. For instance, it is possible to decrease a number of accelerated particles emitted from a laser plasma by using laser pulses with moderate and relativistic intensities
On the other hand, the moderate laser intensities allow for increasing significantly the X-ray pulses’ repetition rate since modern laser systems are able to generate short-duration pulses with intensities
Sign up for High Power Laser Science and Engineering TOC Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
An opportunity of liquid targets’ application, for example, of liquid gallium (Ga) was considered in Refs. [
Another approach of bright X-ray source creating is associated with hybrid targets which consist of a gas jet and a thick solid foil with
In this work we considered the simplest type of target structure – gas jets with molecular density
This paper is devoted to investigation of optimal conditions for clean X-ray source formation in plasma, generated by high-contrast
2 Experimental setup
The experiments were performed on the laser facility IOP 20 TW at the Institute of Physics (IOP), Chinese Academy of Sciences[
Distance from the nozzle outlet to focal spot position along a gas spread axis
The X-ray radiation of the plasma, generated during the laser pulses interaction with the Ar gas jet, was detected by three focusing spectrometers with high spatial resolution (FSSRs)[
Response functions for all diagnostic equipment included in the spectrometric route were considered step by step to calculate absolute values of spectral lines’ intensities from raw data. First, values of a raw grayscale image produced by the scanner can be easily recalculated to photostimulated luminescence (PSL) units according to manufacturer specifications described for example in Ref. [
For measurements of electron energy distribution, we used a split electron spectrometer with magnetic field
3 Results and discussion
For the search of optimal conditions for generation of the clean X-ray source in relativistic laser-produced plasma, first we must choose the initial experimental parameters for following the search step by step. The important challenge was the choice of laser focusing geometry, i.e., which region of the gas jet should be chosen as a laser focusing point. In some previous papers devoted to electron acceleration it was shown that a laser beam normally focused on a far wall of a gas jet and the distance from a nozzle exit plane was about 0.5–1 mm [
As it is seen from Figure
Displacement of the focusing point 2 mm higher from the nozzle outlet, at the position
Figure
Figure
As seen from Figure
On the one hand, the effective electron acceleration can provide X-ray emission increase in the energy range
The following parameter we considered is the laser pulse energy, since its variation directly affects the plasma heating and the properties of the X-ray emission consequently. X-ray emission spectra of argon plasma measured in three main diagnostic directions for different values of the laser pulse energy are shown in Figure
As it is seen from Figure
The comparison of X-ray spectra measured for the maximum laser energy on a target – 280 mJ and minimum – 50 mJ together with corresponding atomic calculations is shown in Figure
We stressed that such X-ray intensity growth was identical for all the diagnostic directions. For the maximum laser energy at these experimental conditions –
Figure
Note that, all the measured X-ray spectra do not contain the Ar
One more important parameter that can influence the X-ray emission intensity is inlet gas pressure –
4 Conclusion
We optimized the experimental conditions to generate a clean source of soft X-ray radiation with photon energies (
The results we obtained confirm that the plasma generated as a result of interaction of high-contrast relativistic femtosecond laser pulses with argon supersonic gas jets can be considered a clean, compact, pulsed source of soft X-ray radiation. It is a unique object for fundamental investigation and also the effective X-ray source for a wide range of practical applications, including adsorption radiography and obtaining phase-contrast images.
[1] T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, H. C. Kapteyn. Science, 336, 1287(2012).
[2] L. M. Chen, W. C. Yan, D. Z. Li, Z. D. Hu, L. Zhang, W. M. Wang, N. Hafz, J. Y. Mao, K. Huang, Y. Ma, J. R. Zhao, J. L. Ma, Y. T. Li, X. Lu, Z. M. Sheng, Z. Y. Wei, J. Gao, J. Zhang. Sci. Rep., 3, 1912(2013).
[3] C. A. Back, J. Davis, J. Grun, L. J. Suter, O. L. Landen, W. W. Hsing, M. C. Miller. Phys. Plasma, 10, 2047(2003).
[4] A. Rousse, K. Ta Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J. P. Rousseau, D. Umstadter, D. Hulin. Phys. Rev. Lett., 93(2004).
[5] C. Serbanescu, S. Fourmaux, J.-C. Kieffer, R. Kincaid, A. Krol. Proc. SPIE, 7451(2009).
[6] T. Nishikawa, S. Suzuki, Y. Watanabe, O. Zhou, H. Nakano. Appl. Phys. B, 78, 885(2004).
[7] M. A. Purvis, V. N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, A. Prieto, Y. Wang, B. M. Luther, L. Yin, S. Wang, J. J. Rocca. Nat. Photon., 7, 796(2013).
[8] H. A. Sumeruk, S. Kneip, D. R. Symes, I. V. Churina, A. V. Belolipetski, T. D. Donnelly, T. Ditmire. Phys. Rev. Lett., 98, 98(2007).
[9] O. N. Rosmej, N. E. Andreev, S. Zaehter, N. Zahn, P. Christ, B. Borm, T. Radon, A. Sokolov, L. P. Pugachev, D. Khaghani, F. Horst, N. G. Borisenko, G. Sklizkov, V. G. Pimenov. New J. Phys., 21(2019).
[10] K. A. Ivanov, D. S. Uryupina, R. V. Volkov, A. P. Shkurinov, I. A. Ozheredov, A. A. Paskhalov, N. V. Eremin, A. B. Savelev. Nuclear Instrum. Meth. Phys. Res., 653, 58(2011).
[11] I. N. Tsymbalov, K. A. Ivanov, R. V. Volkov, A. B. Savel’ev, L. S. Novikov, L. I. Galanina, N. P. Chirskaya, V. Y. Bychenkov, A. I. Chumakov. Inorganic Mater.: Appl. Res., 8, 359(2017).
[12] Y. Fukuda, Y. Akahane, M. Aoyama, N. Inoue, H. Ueda, Y. Kishimoto, K. Yamakawa, A. Y. Faenov, A. I. Magunov, T. A. Pikuz, I. Y. Skobelev, J. Abdallah, G. Csanak, A. S. Boldarev, V. A. Gasilov. Laser Particle Beams, 22, 215(2004).
[13] E. Parra, I. Alexeev, J. Fan, K. Y. Kim, S. J. McNaught, H. M. Milchberg. Conference on Lasers and Electro-Optics, Postconference Technical Digest, 21(2001).
[14] G. C. Junkel-Vives, J. Abdallah, T. Auguste, P. D’Oliveira, S. Hulin, P. Monot, S. Dobosz, A. Y. Faenov, A. I. Magunov, T. A. Pikuz, I. Y. Skobelev, A. S. Boldarev, V. A. Gasilov. Phys. Rev. E, 65(2002).
[15] F. Buersgens, K. W. Madison, D. R. Symes, R. Hartke, J. Osterhoff, W. Grigsby, G. Dyer, T. Ditmire. Phys. Rev. E, 74(2006).
[16] J. T. Mendonça. Theory of Photon Acceleration(2001).
[17] L. Zhang, L. M. Chen, W. M. Wang, W. C. Yan, D. W. Yuan, J. Y. Mao, Z. H. Wang, C. Liu, Z. W. Shen, A. Faenov, T. Pikuz, D. Z. Li, Y. T. Li, Q. L. Dong, X. Lu, J. L. Ma, Z. Y. Wei, Z. M. Sheng, J. Zhang. Appl. Phys. Lett., 100(2012).
[18] V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, K. T. Phuoc. Nat. Phys., 4, 447(2008).
[19] A. Compant La Fontaine, C. Courtois, E. Lefebvre. Phys. Plasma, 19(2012).
[20] V. M. Gordienko, M. S. Djidjoev, I. A. Zhvaniya, V. P. Petukhov, V. T. Platonenko, D. N. Trubnikov, A. S. Khomenko. JETP Lett., 91, 329(2010).
[21] V. M. Gordienko, M. S. Dzhidzhoev, I. A. Zhvaniya, V. T. Platonenko, D. N. Trubnikov, D. O. Fedorov. Eur. Phys. J. D, 67, 55(2013).
[23] J. Wang, J. Feng, C. Zhu, Y. Li, Y. He, D. Li, J. Tan, J. Ma, L. Chen. Plasma Phys. Control. Fusion, 60(2018).
[24] T. Hosokai, K. Kinoshita, T. Watanabe, K. Yoshii, T. Ueda, A. Zhidokov, M. Uesaka, K. Nakajima, M. Kando, H. Kotaki, J. Kansai. 8th European Particle Accelerator Conference, 981(2002).
[25] G. C. Bussolino, A. Faenov, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, T. Pikuz, L. A. Gizzi. J. Phys. D: Appl. Phys., 46(2013).
[26] A. S. Boldarev, V. A. Gasilov, A. Y. Faenov, Y. Fukuda, K. Yamakawa. Rev. Sci. Instrum., 77(2006).
[27] A. Y. Faenov, S. A. Pikuz, A. I. Erko, B. A. Bryunetkin, V. M. Dyakin, G. V. Ivanenkov, A. R. Mingaleev, T. A. Pikuz, V. M. Romanova, T. A. Shelkovenko. Phys. Scripta, 50, 333(1994).
[28] I. Skobelev, A. Faenov, B. Bryunetkin, V. Dyakin, T. Pikuz, S. Pikuz, T. Shelkovenko, V. Romanova, A. Mingaleev. Soviet J. Exper. Theoret. Phys., 81, 692(1995).
[29] M. J. Haugh, J. Lee, E. Romano, M. Schneider. Proc. SPIE, 8850(2013).
[30] J. P. Holder, N. Izumi, M. Beach, M. J. Ayers, P. Bell, M. Schneider, D. K. Bradley, T. Kohut, R. Ehrlich, M. Cohen, R. Ramirez, D. Thorn. Rev. Sci. Instrum., 89(2018).
[31] B. L. Henke, E. M. Gullikson, J. C. Davis. Atom. Data Nuclear Data Tables, 54, 181(1993).
[32] Y. S. Lavrinenko, I. V Morozov, S. A. Pikuz, I. Y. Skobelev. J. Phys.: Conf. Ser., 653(2015).
[33] M. Sánchez del Río, R. J. Dejus. Proc. SPIE, 8141(2011).
[34] L. Zhang, L.-M. Chen, D.-W. Yuan, W.-C. Yan, Z.-H. Wang, C. Liu, Z.-W. Shen, A. Faenov, T. Pikuz, I. Skobelev, V. Gasilov, A. Boldarev, J.-Y. Mao, Y.-T. Li, Q.-L. Dong, X. Lu, J.-L. Ma, W.-M. Wang, Z.-M. Sheng, J. Zhang. Opt. Express, 19(2011).
[35] P. Koester, G. C. Bussolino, G. Cristoforetti, A. Faenov, A. Giulietti, D. Giulietti, L. Labate, T. Levato, T. Pikuz, L. A. Gizzi. Laser Particle Beams, 33, 331(2015).
[36] J. J. MacFarlane, I. E. Golovkin, P. R. Woodruff, S. K. Kulkarni, I. M. Hall. IEEE International Conference on Plasma Science, 1(2013).
[37] Y. Fukuda, Y. Akahane, M. Aoyama, N. Inoue, H. Ueda, Y. Nakai, K. Tsuji, K. Yamakawa, Y. Hironaka, H. Kishimura, H. Morishita, K. I. Kondo, K. G. Nakamura. Appl. Phys. Lett., 85, 5099(2004).
[38] A. I. Magunov, T. A. Pikuz, I. Y. Skobelev, A. Y. Faenov, F. Blasco, F. Dorchies, T. Caillaud, C. Bonte, F. Salin, C. Stenz, P. A. Loboda, I. A. Litvinenko, V. V. Popova, G. V. Baidin, G. C. Junkel-Vives, J. Abdallah. J. Exper. Theoret. Phys. Lett., 74, 375(2001).
[39] Y. Fukuda, A. Y. Faenov, M. Tampo, T. A. Pikuz, T. Nakamura, M. Kando, Y. Hayashi, A. Yogo, H. Sakaki, T. Kameshima, A. S. Pirozhkov, K. Ogura, M. Mori, T. Z. Esirkepov, J. Koga, A. S. Boldarev, V. A. Gasilov, A. I. Magunov, T. Yamauchi, R. Kodama, P. R. Bolton, Y. Kato, T. Tajima, H. Daido, S. V. Bulanov. Phys. Rev. Lett., 103(2009).
Get Citation
Copy Citation Text
Maria Alkhimova, Sergey Ryazantsev, Igor Skobelev, Alexey Boldarev, Jie Feng, Xin Lu, Li-Ming Chen, Sergey Pikuz. Clean source of soft X-ray radiation formed in supersonic Ar gas jets by high-contrast femtosecond laser pulses of relativistic intensity[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e26
Category: Research Articles
Received: Dec. 18, 2019
Accepted: Apr. 20, 2020
Published Online: Jun. 29, 2020
The Author Email: