Acta Optica Sinica, Volume. 42, Issue 22, 2226002(2022)
Tight Focusing Properties of Partially Coherent Radially Polarized Rotationally-Symmetric Power-Exponent-Phase Vortex Beam
[1] Li P, Liu S, Peng T et al. Spiral autofocusing Airy beams carrying power-exponent-phase vortices[J]. Optics Express, 22, 7598-7606(2014).
[2] Lao G M, Zhang Z H, Zhao D M. Propagation of the power-exponent-phase vortex beam in paraxial ABCD system[J]. Optics Express, 24, 18082-18094(2016).
[3] Fan C J, Liu Y X, Wang X Y et al. Trapping two types of particles by using a tightly focused radially polarized power-exponent-phase vortex beam[J]. Journal of the Optical Society of America A, 35, 903-907(2018).
[4] Dang J C, Fan C J, Li H R et al. Tight focusing of radially polarized power-exponent-phase vortex beam[J]. Journal of Optoelectronics·Laser, 29, 453-458(2018).
[5] Chen K, Ma Z Y, Zhang M M et al. Propagation properties of partially coherent power-exponent-phase vortex beam[J]. Acta Physica Sinica, 71, 014203(2022).
[6] Zhou G Q, Zhou Y M, Ji Z Y et al. Hollow Gaussian beams with the power-exponent-phase vortex[J]. Journal of Modern Optics, 65, 2186-2194(2018).
[7] Xu Y Q, Zhou Y M, Chen R P et al. Circular Lorentz-Gauss beams with the power-exponent-phase vortex[J]. Laser Physics, 30, 025002(2020).
[8] Ma Z Y, Chen K, Zhang M M et al. Propagation characteristics of Laguerre-Gaussian power-exponent-phase-vortex beams[J]. Acta Optica Sinica, 42, 0526001(2022).
[9] Pei Z H, Huang S J, Chen Y et al. Comparison of microparticle manipulating characteristics of canonical vortex beam and power-exponent-phase vortex beam[J]. Journal of Modern Optics, 68, 224-232(2021).
[10] Shen D H, Wang K, Zhao D M. Generation and propagation of a new kind of power-exponent-phase vortex beam[J]. Optics Express, 27, 24642-24653(2019).
[11] Lai S T, Lan Y P, Mao H X et al. Self-focusing characteristics of circular array airy vortex beams[J]. Chinese Journal of Lasers, 46, 0405002(2019).
[12] Chen K, Ma Z Y, Zhang M M et al. The tight-focusing properties of radially polarized symmetrical power-exponent-phase vortex beam[J]. Journal of Optics, 24, 055602(2022).
[13] Zhang H, Lu X Y, Wang Z Y et al. Generation and propagation of partially coherent power-exponent-phase vortex beam[J]. Frontiers in Physics, 9, 781688(2021).
[14] Wolf E[M]. Introduction to the theory of coherence and polarization of light(2007).
[15] Zhu J, Tang H Q, Li X L. Focusing properties of partially coherent Gaussian beam with cosine-Lorentz correlated structural function[J]. Acta Optica Sinica, 37, 1126001(2017).
[16] Shirai T, Dogariu A, Wolf E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence[J]. Journal of the Optical Society of America A, 20, 1094-1102(2003).
[17] Wang M H, Yuan X H, Li J et al. Propagation of radial partially coherent beams in anisotropic non-Kolmogorov turbulence[J]. Acta Optica Sinica, 38, 0306003(2018).
[18] Xu H F, Zhang W J, Qu J et al. Optical trapping Rayleigh dielectric particles with focused partially coherent dark hollow beams[J]. Journal of Modern Optics, 62, 1839-1848(2015).
[19] Zuo W, Han Y S, Zhou Z L et al. Optical trapping force on two types of particles with a focused partially coherent Lommel-Gaussian beam[J]. Results in Physics, 32, 105076(2022).
[20] Zhang J F, Wang Z Y, Cheng B et al. Atom cooling by partially spatially coherent lasers[J]. Physical Review A, 88, 023416(2013).
[21] Cai Y J, Peschel U. Second-harmonic generation by an astigmatic partially coherent beam[J]. Optics Express, 15, 15480-15492(2007).
[22] Chen X Z, Huang L L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).
[23] Zeng J, Chen Y H, Liu X L et al. Research progress on partially coherent vortex beams[J]. Acta Optica Sinica, 39, 0126004(2019).
[24] Ping C C, Liang C H, Wang F et al. Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties[J]. Optics Express, 25, 32475-32490(2017).
[25] Korotkova O, Sahin S, Shchepakina E. Multi-Gaussian Schell-model beams[J]. Journal of the Optical Society of America A, 29, 2159-2164(2012).
[26] Zeng J, Liang C H, Wang H Y et al. Partially coherent radially polarized fractional vortex beam[J]. Optics Express, 28, 11493-11513(2020).
[27] Guo S Y, Cui Z W, Wang J et al. Local optical chirality-analysis of tightly focused vortex beams[J]. Acta Photonica Sinica, 50, 1026002(2021).
[28] Liang C H, Zhao C C, Zhao C L et al. Degree of polarization of a tightly focused, partially coherent anomalous hollow beam[J]. Journal of the Optical Society of America A, 31, 2753-2758(2014).
[29] Dong Y, Cai Y J, Zhao C C. Degree of polarization of a tightly focused partially coherent dark hollow beam[J]. Applied Physics B, 105, 405-414(2011).
[30] Wang F, Liang C H, Yuan Y S et al. Generalized multi-Gaussian correlated Schell-model beam: from theory to experiment[J]. Optics Express, 22, 23456-23464(2014).
Get Citation
Copy Citation Text
Kang Chen, Shuzhen Li, Yuqi Pan, Mei Zhang, Yongqi Yang, Youyou Hu. Tight Focusing Properties of Partially Coherent Radially Polarized Rotationally-Symmetric Power-Exponent-Phase Vortex Beam[J]. Acta Optica Sinica, 2022, 42(22): 2226002
Category: Physical Optics
Received: Apr. 18, 2022
Accepted: Jun. 4, 2022
Published Online: Nov. 7, 2022
The Author Email: Youyou Hu (yyhu@just.edu.cn)