Glass Enamel & Ophtalmic Optics, Volume. 51, Issue 6, 48(2023)
Summary of Strategies for Improving the Performance of Transition Metal Carbonate Anode Materials for Lithium Ion Battery
[1] [1] CRESCE A W, XU K. Aqueous lithium-ion batteries[J]. Carbon Energy, 2021, 3(5): 721-751.
[2] [2] KESAVAN T, SURESH S, ARULRAJ I, et al. Facile synthesis of hollow sphere MnCO3: a cheap and environmentally benign anode material for Li-ion batteries[J]. Materials Letters, 2014, 136: 411-415.
[3] [3] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29.
[4] [4] XU D, LIU W, ZHANG C, et al. Monodispersed FeCO3 nanorods anchored on reduced graphene oxide as mesoporous composite anode for high-performance lithium-ion batteries[J]. Journal of Power Sources, 2017, 364: 359-366.
[5] [5] ZHAO S, WEI S, LIU R, et al. Cobalt carbonate dumbbells for high-capacity lithium storage: a slight doping of ascorbic acid and an enhancement in electrochemical performances[J]. Journal of Power Sources, 2015, 284: 154-161.
[6] [6] ZHAO S, SEWELL C D, LIU R, et al. SnO2 as advanced anode of alkali-ion batteries: inhibiting Sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility[J]. Advanced Energy Materials, 2020, 10(6): 1902657.
[7] [7] DENG S, CHEN Y, KOLLIOPOULOS G, et al. Thermodynamic and experimental analysis of Ni-Co-Mn carbonate precursor synthesis for Li-rich cathode materials[J]. Ionics, 2020, 26(6): 2747-2755.
[8] [8] ZENG T, ZHANG C. Facile-synthesized amorphous CoCO3 for high-capacity lithium-ion battery anode[J]. Ionics, 2019, 25(9): 4149-4159.
[9] [9] XIAO L, WANG S, WANG Y, et al. High-capacity and self-stabilized manganese carbonate microspheres as anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25369.
[10] [10] ZHANG L, MEI T, WANG X, et al. Hierarchical architectured MnCO3 microdumbbells: facile synthesis and enhanced performance for lithium ion batteries[J]. CrystEngComm, 2015, 17(33): 6450-6455.
[11] [11] GARAKANI M A, ABOUALI S, ZHANG B, et al. Cobalt carbonate/ and cobalt oxide/graphene aerogel composite anodes for high performance Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(21): 18971.
[12] [12] GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9): 5464-5519.
[13] [13] LI J, LI M, GUO C, et al. Recent progress and challenges of micro-nanostructured transition metal carbonate anodes for lithium ion batteries[J]. European Journal of Inorganic Chemistry, 2018, 2018(41): 4508-4521.
[14] [14] SU L, ZHOU Z, QIN X, et al. CoCO3 submicrocube/graphene composites with high lithium storage capability[J]. Nano Energy, 2013, 2(2): 276-282.
[15] [15] YAO B, DING Z, FENG X, et al. Enhanced rate and cycling performance of FeCO3/graphene composite for high energy Li ion battery anodes[J]. Electrochimica Acta, 2014, 148: 283-290.
[16] [16] GUO B, KONG Q, ZHU Y, et al. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials[J]. Chemistry A European Journal, 2011, 17(52): 14878-14884.
[17] [17] ZHANG R, FU Q, GAO P, et al. Transition metal carbonate anodes for Li-ion battery: fundamentals, synthesis and modification[J]. Journal of Energy Chemistry, 2022, 70: 95-120.
[18] [18] MU Y, WANG L, ZHAO Y, et al. 3D flower-like MnCO3 microcrystals: evolution mechanisms of morphology and enhanced electrochemical performances[J]. Electrochimica Acta, 2017, 251: 119-128.
[19] [19] CAO Z, DING Y, ZHANG J, et al. Submicron peanut-like MnCO3 as an anode material for lithium ion batteries[J]. RSC Advances, 2015, 5(69): 56299-56303.
[20] [20] YAN Y, ZHU Y, YU Y, et al. MnCO3 microstructures assembled with nanoparticles: shape-controlled synthesis and their application for Li-ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2012, 12(9): 7334.
[21] [21] SHI S, ZHANG M, LIU Y, et al. Efficient construction of a CoCO3/graphene composite anode material for lithium-ion batteries by stirring solvothermal reaction[J]. Ceramics International, 2018, 44(4): 3718-3725.
[22] [22] ZHANG C, LIU W, CHEN D, et al. One step hydrothermal synthesis of FeCO3 cubes for high performance lithium-ion battery anodes[J]. Electrochimica Acta, 2015, 182: 559-564.
[23] [23] LIU X, YANG S, CHEN X, et al. Synthesis and electrochemical properties of FeCO3 with different morphology for lithium-ion battery application[J]. Journal of Alloys and Compounds, 2017, 698: 87-93.
[24] [24] ZHAO S, WANG Y, LIU R, et al. Full-molar-ratio synthesis and enhanced lithium storage properties of CoxFe1-xCO3 composites with an integrated lattice structure and an atomic-scale synergistic effect[J]. Journal of Materials Chemistry A, 2015, 3(33): 17181-17189.
[25] [25] KONG F, HAN Z, HE X, et al. Synergistic effect on the improved electrochemical performance in the case of Fe1-xCdxCO3[J]. Journal of Physical Chemistry C, 2019, 123(32): 19333-19339.
[26] [26] WANG Y Y, ZHAO Z W, LIU Y, et al. Precipitant-free solvothermal construction of spindle-like CoCO3/reduced graphene oxide hybrid anode toward high-performance lithium-ion batteries[J]. Rare Metals, 2020, 39(9): 1082-1091.
[27] [27] ZHANG R, WANG D, QIN L C, et al. MnCO3/Mn3O4/reduced graphene oxide ternary anode materials for lithium-ion batteries: facile green synthesis and enhanced electrochemical performance[J]. Journal of Materials Chemistry A, 2017, 5(32): 17001-17011.
[28] [28] GUAN B Y, LOU X W. Complex cobalt sulfide nanobubble cages with enhanced electrochemical properties[J]. Small Methods, 2017, 1(7): 1700158.
[29] [29] YU L, YANG J F, LOU X W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage[J]. Angewandte Chemie International Edition, 2016, 55(43): 13422-13426.
[30] [30] ZHONG Y, SU L, YANG M, et al. Rambutan-like FeCO3 hollow microspheres: facile preparation and superior lithium storage performances[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11212-11217.
[31] [31] LI J, XU W, GUO C, et al. Effect of Ni content in NixMn1-xCO3 (x = 0, 0.20, 0.25, 0.33) submicrospheres on the performances of rechargeable lithium ion batteries[J]. Electrochimica Acta, 2018, 276: 333-342.
[32] [32] SHARMA Y, SHARMA N, RAO G V S, et al. Nano-(Cd1/3Co1/3Zn1/3)CO3: a new and high capacity anode material for Li-ion batteries[J]. Journal of Materials Chemistry, 2009, 19(28): 5047-5054.
[33] [33] LIU M, WANG Q, LIU Z, et al. In-situ N-doped MnCO3 anode material via one-step solvothermal synthesis: doping mechanisms and enhanced electrochemical performances[J]. Chemical Engineering Journal, 2020, 383: 123161.
[34] [34] ZHONG Y, YANG M, ZHOU X, et al. Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCO3/large-area graphene composites[J]. Advanced Materials, 2015, 27(5): 806-812.
[35] [35] LU Z, WANG H, ZHOU T, et al. CoCO3 micrometer particles stabilized by carbon nanofibers networks as composite electrode for enhanced rate and cyclic performance of lithium-ion batteries[J]. Electrochimica Acta, 2018, 270: 22-29.
[36] [36] ZHAO S, WANG Z, HE Y, et al. A robust route to Co2(OH)2CO3 ultrathin nanosheets with superior lithium storage capability templated by aspartic acid-functionalized graphene oxide[J]. Advanced Energy Materials, 2019, 9(26): 1901093.
Get Citation
Copy Citation Text
FEI Jiamin, ZHAO Shiqiang. Summary of Strategies for Improving the Performance of Transition Metal Carbonate Anode Materials for Lithium Ion Battery[J]. Glass Enamel & Ophtalmic Optics, 2023, 51(6): 48
Category:
Received: Dec. 9, 2022
Accepted: --
Published Online: Nov. 22, 2023
The Author Email: ZHAO Shiqiang (zhaosq@wzu.edu.cn)