Chinese Journal of Lasers, Volume. 50, Issue 23, 2301010(2023)

Fiber Laser with Single Frequency, Narrow Line Width, Narrow Pulse Width, and High Repetition Frequency

Hao Zhan1,2, Xin Zhang2、*, Junqing Meng1,3、**, Dawei Zhang1, Chaoyang Zhong2, Xia Hou2, and Weibiao Chen4
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Space Laser Engineering Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    References(22)

    [1] Liu Q, Meng J Q, Zu J F et al. High repetition frequency narrow pulse electro-optically Q-switched laser for space applications[J]. Chinese Journal of Lasers, 44, 0601005(2017).

    [2] Wang A Y, Tao Y L, Li X et al. Design and test of high repetition frequency photon counting lidar prototype[J]. Laser & Infrared, 47, 803-807(2017).

    [3] Zhang Y N, Meng J Q, Wang M J et al. High repetition frequency narrow pulse width single frequency laser[J]. Chinese Journal of Lasers, 48, 0601005(2021).

    [4] Abdalati W, Zwally H J, Bindschadler R et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 98, 735-751(2010).

    [5] Sawruk N W, Burns P M, Edwards R E et al. ICESat-2 laser technology readiness level evolution[J]. Proceedings of SPIE, 9342, 93420L(2015).

    [6] Yu A W, Krainak M A, Stephen M A et al. Spaceflight laser development for future remote sensing applications[J]. Proceedings of SPIE, 8182, 818204(2011).

    [7] Yu A W, Krainak M A, Harding D J et al. Multi-beam laser altimeter system simulator for the Lidar Surface Topography (LIST) mission[C](2012).

    [8] Yu A W, Betin A, Krainak M A et al. Highly efficient Yb∶YAG master oscillator power amplifier laser transmitter for future space flight missions[C], AW4A.26(2012).

    [9] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).

    [10] Tian H, Shi C D, Fu S J et al. 0.59 mJ single-frequency Yb3+ 100-nanosecond pulsed all-fiber laser[J]. Chinese Journal of Lasers, 49, 1301005(2022).

    [11] Su R T, Ma P F, Zhou P et al. High-peak-power temporally shaped nanosecond fiber laser immune to SPM-induced spectral broadening[J]. High Power Laser Science and Engineering, 7, e27(2019).

    [12] Geng J H, Wang Q, Jiang Z et al. Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2 μm[J]. Optics Letters, 36, 2293-2295(2011).

    [13] Fang Q, Shi W, Petersen E et al. Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-μm[J]. IEEE Photonics Technology Letters, 24, 353-355(2012).

    [14] Shi W, Petersen E B, Nguyen D T et al. 220 μJ monolithic single-frequency Q-switched fiber laser at 2 μm by using highly Tm-doped germanate fibers[J]. Optics Letters, 36, 3575-3577(2011).

    [15] Shi C D, Tian H, Sheng Q et al. High-power single-frequency pulsed fiber MOPA via SPM suppression based on a triangular pulse[J]. Results in Physics, 28, 104594(2021).

    [16] Huang L, Ma P F, Su R T et al. Comprehensive investigation on the power scaling of a tapered Yb-doped fiber-based monolithic linearly polarized high-peak-power near-transform-limited nanosecond fiber laser[J]. Optics Express, 29, 761-782(2021).

    [17] Sheng Q, Wang M, Shi C D et al. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses[J]. Acta Physica Sinica, 70, 214202(2021).

    [18] Su R T, Xiao H, Zhou P et al. Self-phase modulation pre-compensation of narrow linewidth pulsed fiber lasers[J]. Acta Physica Sinica, 67, 164201(2018).

    [19] Di Teodoro F, Brooks C D. 1.1 MW peak-power, 7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier[J]. Optics Letters, 30, 2694-2696(2005).

    [20] Chen H, Yan P, Xiao Q et al. PCF based high power narrow line width pulsed fiber laser[J]. Applied Physics B, 108, 635-639(2012).

    [21] Di Teodoro F, Morais J, McComb T S et al. SBS-managed high-peak-power nanosecond-pulse fiber-based master oscillator power amplifier[J]. Optics Letters, 38, 2162-2164(2013).

    [22] Troupaki E, Denny Z H, Wu S et al. Space qualification of the optical filter assemblies for the ICESat-2/ATLAS instrument[J]. Proceedings of SPIE, 9346, 93460H(2015).

    Tools

    Get Citation

    Copy Citation Text

    Hao Zhan, Xin Zhang, Junqing Meng, Dawei Zhang, Chaoyang Zhong, Xia Hou, Weibiao Chen. Fiber Laser with Single Frequency, Narrow Line Width, Narrow Pulse Width, and High Repetition Frequency[J]. Chinese Journal of Lasers, 2023, 50(23): 2301010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Feb. 23, 2023

    Accepted: Apr. 26, 2023

    Published Online: Dec. 7, 2023

    The Author Email: Zhang Xin (zhangxin@siom.ac.cn), Meng Junqing (jqmeng@siom.ac.cn)

    DOI:10.3788/CJL230562

    Topics