APPLIED LASER, Volume. 45, Issue 1, 86(2025)
Research on the Mechanism and Process of Ultrafast Laser Penetration Breakage of Electric Meters
[1] [1] LEONE C, GENNA S. Heat affected zone extension in pulsed Nd: YAG laser cutting of CFRP[J]. Composites Part B: Engineering, 2018, 140: 174-182.
[2] [2] PICKERING S J. Recycling technologies for thermoset composite materials—Current status[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(8): 1206-1215.
[3] [3] ZHAO X, WANG X L, TIAN F, et al. A fast and mild closed-loop recycling of anhydride-cured epoxy through microwave-assisted catalytic degradation by trifunctional amine and subsequent reuse without separation[J]. Green Chemistry, 2019, 21(9): 2487-2493.
[4] [4] MENG F R, OLIVETTI E A, ZHAO Y Y, et al. Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9854-9865.
[6] [6] WLODARCZYK K L, ARDRON M, WADDIE A J, et al. Tamper-proof markings for the identification and traceability of high-value metal goods[J]. Optics Express, 2017, 25(13): 15216-15230.
[9] [9] LU G X, LI J, ZHANG Y K, et al. A metal marking method based on laser shock processing[J]. Materials and Manufacturing Processes, 2019, 34(6): 598-603.
[12] [12] HRABOVSKY J, LIBERATORE C, MIRZA I, et al. Surface structuring of kapton polyimide with femtosecond and picosecond ir laser pulses[J]. Interfacial Phenomena and Heat Transfer, 2019, 7(2): 113-121.
[14] [14] BYSKOV-NIELSEN J, SAVOLAINEN J M, CHRISTENSEN M S, et al. Ultra-short pulse laser ablation of metals: Threshold fluence, incubation coefficient and ablation rates[J]. Applied Physics A, 2010, 101(1): 97-101.
[15] [15] ASSAF Y, KIETZIG A M. Optical and chemical effects governing femtosecond laser-induced structure formation on polymer surfaces[J]. Materials Today Communications, 2018, 14: 169-179.
[16] [16] SURIANO R, KUZNETSOV A, EATON S M, et al. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels[J]. Applied Surface Science, 2011, 257(14): 6243-6250.
[17] [17] BAUM A, SCULLY P J, PERRIE W, et al. Mechanisms of femtosecond laser-induced refractive index modification of poly(methyl methacrylate)[J]. JOSA B, 2010, 27(1): 107-111.
[18] [18] LUO Y M, JIA W, SONG Y J, et al. High-repetition-rate femtosecond laser micromachining of poly(methyl methacrylate)[J]. Chinese Optics Letters, 2015, 13(7): 70003-70006.
[19] [19] LONG J Y, CAO Z, LIN C H, et al. Formation mechanism of hierarchical Micro-and nanostructures on copper induced by low-cost nanosecond lasers[J]. Applied Surface Science, 2019, 464: 412-421.
[20] [20] OUYANG Z Q, LONG J Y, WU J W, et al. Preparation of high-quality three-dimensional microstructures on polymethyl methacrylate surfaces by femtosecond laser micromachining and thermal-induced micro-leveling[J]. Optics & Laser Technology, 2022, 145: 107499.
[21] [21] SHUGAEV M V, WU C P, ARMBRUSTER O, et al. Fundamentals of ultrafast laser-material interaction[J]. MRS Bulletin, 2016, 41(12): 960-968.
[22] [22] AXENTE E, NOL S, HERMANN J, et al. Correlation between plasma expansion and damage threshold by femtosecond laser ablation of fused silica[J]. Journal of Physics D: Applied Physics, 2008, 41(10): 105216.
[25] [25] GATTASS R R, MAZUR E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2: 219-225.
Get Citation
Copy Citation Text
Zhang Wenjia, Wen Kai, Ouyang Ziqing, Long Jiangyou. Research on the Mechanism and Process of Ultrafast Laser Penetration Breakage of Electric Meters[J]. APPLIED LASER, 2025, 45(1): 86
Category:
Received: May. 9, 2023
Accepted: Apr. 17, 2025
Published Online: Apr. 17, 2025
The Author Email: Long Jiangyou (longjy@gdut.edu.cn)