Optics and Precision Engineering, Volume. 32, Issue 11, 1759(2024)

Multi-level filter network for low-overlap point cloud registration

Minqi HE1,2, Li LIU1,2, Shang LI1,2, Hao WU1,2、*, and Dahu ZHU1,2
Author Affiliations
  • 1Hubei Key Laboratory of Advanced Automotive Components Technology, Wuhan University of Technology, Wuhan430070, China
  • 2Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan430070, China
  • show less
    Figures & Tables(15)
    Overall network structure of MulFNet
    Encoder-decoder with feature pyramid
    Multi-scale consistency voting mechanism
    Info-interaction transformer module
    Correspondence extraction module
    Visualization of indoor 3DMatch registration result
    Registration error chromatogram in single scanning of flywheel shell
    Difference of evaluation index between nearest correspondence and positive correspondence
    Registration results of car body dataset by 3D Match with different overlap ratios
    Consistency voting of multi-scale features in flywheel shell
    • Table 1. Experimental results of different methods on indoor 3DMatch and 3DLoMatch datasets

      View table
      View in Article

      Table 1. Experimental results of different methods on indoor 3DMatch and 3DLoMatch datasets

      Method3DMatch FMR3DLoMatch FMR
      500025001000500250500025001000500250
      FCGF2097.497.39796.796.676.675.474.271.767.3
      PREDATOR1896.696.696.596.396.578.677.476.375.775.3
      CoFiNet3198.198.398.198.298.383.183.583.383.182.6
      GeoTransformer2297.997.997.997.997.688.388.688.888.688.3
      MulFNet(Ours)97.697.497.196.796.885.784.684.782.479.4
      Method3DMatch IR3DLoMatch IR
      500025001000500250500025001000500250
      FCGF2056.854.148.742.534.121.42017.214.811.6
      PREDATOR185858.457.154.149.326.728.128.327.525.8
      CoFiNet3149.851.251.952.252.224.425.926.726.826.9
      GeoTransformer2271.975.27682.285.143.545.346.252.957.7
      MulFNet(Ours)66.563.670.867.265.338.138.635.236.130.8
      Method3DMatch RR3DLoMatch RR
      500025001000500250500025001000500250
      FCGF2085.184.783.381.671.440.141.738.235.426.8
      PREDATOR188989.990.688.586.659.861.262.460.858.1
      CoFiNet3189.388.988.487.48767.566.264.263.161
      GeoTransformer229291.891.891.491.27574.874.274.173.5
      MulFNet(Ours)89.491.290.488.289.668.569.766.367.666.8
    • Table 2. Running time of different methods on indoor 3DMatch and 3DLoMatch datasets

      View table
      View in Article

      Table 2. Running time of different methods on indoor 3DMatch and 3DLoMatch datasets

      Method3DMatch3DLoMatch
      FeaturePoseTotalFeaturePoseTotal
      FCGF200.0553.4923.5470.0543.4043.458
      PREDATOR180.0345.3765.4100.0335.2075.239
      CoFiNet310.1211.8972.0180.1171.8201.936
      GeoTransformer220.0791.6361.7150.0761.5981.674
      MulFNet(Ours)0.1461.8572.0030.1381.7961.915
    • Table 3. Experimental results of flywheel shell dataset (overlap ratio of 10.49%)

      View table
      View in Article

      Table 3. Experimental results of flywheel shell dataset (overlap ratio of 10.49%)

      MethodCoarseFine
      Valid /%

      RMSE

      /mm

      RMSE

      /mm

      ER

      /(°)

      ET

      /mm

      Valid

      /%

      RMSE

      /mm

      RMSE*

      /mm

      ER

      /(°)

      ET

      /mm

      4PCS122921.00326.6552.2486.597364.86827.8082.9720.617
      Super4PCS3510020.88226.4662.9026.3471008.14927.1762.6200.829
      FGR171009.51013.9010.7903.3681003.3909.0470.3460.409
      FPFH152126.06431.7032.9787.538217.73623.0312.9600.925
      ICP3-----1001.7493.8160.1690.147
      DPWVM9-----1001.6014.6900.3120.134
      FCGF20147.78131.8863.6130.61092.0823.3990.3770.154
      PREDATOR189919.28323.5712.4245.7371006.04125.9492.4210.820
      CoFiNet311009.20211.8041.0352.8461001.5017.7040.7890.189
      GeoTransformer221007.58731.7943.1631.1301007.07128.1332.7751.009
      MulFNet(Ours)781.3855.4191.0970.248651.0321.6490.1510.078
    • Table 4. Experimental results of car body dataset (overlap ratio of 14.56%)

      View table
      View in Article

      Table 4. Experimental results of car body dataset (overlap ratio of 14.56%)

      MethodCoarseFine

      Valid

      /%

      RMSE

      /mm

      RMSE*

      /mm

      ER

      /(°)

      ET

      /mm

      Valid

      /%

      RMSE

      /mm

      RMSE*

      /mm

      ER

      /(°)

      ET

      /mm

      4PCS122025.71927.6823.5736.684207.68933.3654.8630.843
      Super4PCS3510030.45832.6612.8286.5979810.55525.8592.8990.931
      FGR1710013.94218.2262.0344.5831007.68713.4091.2330.688
      FPFH155824.04527.7673.4276.859538.20016.5151.9820.959
      ICP3-----901.8373.3520.1430.123
      DPWVM9-----1001.0432.6050.1570.137
      FCGF20786.32224.8453.2961.009801.1831.7030.1690.093
      PREDATOR18988.26310.0511.0022.5261004.3009.7880.7480.215
      CoFiNet311006.8949.1940.9002.2231003.3337.4330.5810.161
      GeoTransformer221007.67233.4042.6511.0831006.81128.0893.1031.059
      MulFNet(Ours)673.17112.4641.1210.343820.9581.3790.2740.151
    • Table 5. Ablation experiment result of MulFNet architecture

      View table
      View in Article

      Table 5. Ablation experiment result of MulFNet architecture

      Multi-levelInfo-InteractionFilterValid/%RMSE/mmRMSE*/mmER/mmET/(°)
      ×381.706 25.946 20.354 90.237 2
      ×472.336 87.286 40.601 10.247 9
      ×832.521 411.113 41.107 00.371 2
      651.031 51.649 00.150 60.077 8
    Tools

    Get Citation

    Copy Citation Text

    Minqi HE, Li LIU, Shang LI, Hao WU, Dahu ZHU. Multi-level filter network for low-overlap point cloud registration[J]. Optics and Precision Engineering, 2024, 32(11): 1759

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 6, 2023

    Accepted: --

    Published Online: Aug. 8, 2024

    The Author Email: Hao WU (wuhao2023@whut.edu.cn)

    DOI:10.37188/OPE.20243211.1759

    Topics