Acta Optica Sinica, Volume. 42, Issue 15, 1513002(2022)

Enhancement of Resonance Energy Transfer in Surface Plasmon-Photon Hybrid Waveguide

jie Liu, Xuanren Chen, Xiaoyun Wang*, and Yonggang Huang**
Author Affiliations
  • College of Physics and Electromechanical Engineering, Jishou University, Jishou416000, Hunan , China
  • show less
    References(35)

    [1] Rao V S C M, Hughes S. Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient "on chip" single photon gun[J]. Physical Review Letters, 99, 193901(2007).

    [2] Goban A, Hung C L, Hood J D et al. Superradiance for atoms trapped along a photonic crystal waveguide[J]. Physical Review Letters, 115, 063601(2015).

    [3] Yu R L, Li J, Chen W W et al. Silicon-based all-optical Fredkin gate using cross-phase modulation effect[J]. Acta Optica Sinica, 41, 0913001(2021).

    [4] He R Q, Liang G H, Liu H et al. Optical control and applications on curved waveguides[J]. Acta Optica Sinica, 41, 0823002(2021).

    [5] Li X M, Zhang M D, Zhu X D et al. Unidirectional wave guide based on valley Hall effect in optical communication band[J]. Acta Optica Sinica, 41, 1913001(2021).

    [6] Yang X G, Bao D H, Li B J. Plasmon-mediated whispering-gallery-mode emission from quantum-dot-coated gold nanosphere[J]. The Journal of Physical Chemistry C, 119, 25476-25481(2015).

    [7] Liu R M, Zhou Z K, Yu Y C et al. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit[J]. Physical Review Letters, 118, 237401(2017).

    [8] Tian M, Huang Y G, Wen S S et al. Level shift and decay dynamics of a quantum emitter around a plasmonic nanostructure[J]. Physical Review A, 99, 053844(2019).

    [9] Wen S S, Huang Y G, Wang X Y et al. Bound state and non-Markovian dynamics of a quantum emitter around a surface plasmonic nanostructure[J]. Optics Express, 28, 6469-6489(2020).

    [10] Yang X G, Xu R, Bao D H et al. Gold nanorod-enhanced light emission in quantum-dot-doped polymer nanofibers[J]. ACS Applied Materials & Interfaces, 6, 11846-11850(2014).

    [11] Yang X G, Li Y C, Lou Z Z et al. Optical energy transfer from photonic nanowire to plasmonic nanowire[J]. ACS Applied Energy Materials, 1, 278-283(2018).

    [12] Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement[J]. Optics Express, 17, 16646-16653(2009).

    [13] Xu D, Huang Y G, Wang X Y et al. Hybrid surface plasmon polariton waveguide of low-loss and ultra-small modal area[J]. Acta Optica Sinica, 35, 0623003(2015).

    [14] Dung H T, Knöll L, Welsch D G. Intermolecular energy transfer in the presence of dispersing and absorbing media[J]. Physical Review A, 65, 043813(2002).

    [15] Yu Y C, Liu J M, Jin C J et al. Plasmon-mediated resonance energy transfer by metallic nanorods[J]. Nanoscale Research Letters, 8, 209(2013).

    [16] Engel G S, Calhoun T R, Read E L et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems[J]. Nature, 446, 782-786(2007).

    [17] Lakowicz J R. Radiative decay engineering: biophysical and biomedical applications[J]. Analytical Biochemistry, 298, 1-24(2001).

    [18] Wang L Y, Yan R X, Huo Z Y et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles[J]. Angewandte Chemie International Edition, 44, 6054-6057(2005).

    [19] Nellore V, Xi S, Dwyer C. Self-assembled resonance energy transfer keys for secure communication over classical channels[J]. ACS Nano, 9, 11840-11848(2015).

    [20] Hopmeier M, Guss W, Deussen M et al. Enhanced dipole-dipole interaction in a polymer microcavity[J]. Physical Review Letters, 82, 4118-4121(1999).

    [21] Andrew P, Barnes W L. Förster energy transfer in an optical microcavity[J]. Science, 290, 785-788(2000).

    [22] Huang Y G, Chen G Y, Jin C J et al. Dipole-dipole interaction in a photonic crystal nanocavity[J]. Physical Review A, 85, 053827(2012).

    [23] Lakowicz J R, Józef K, Shen Y B et al. Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA[J]. Journal of Fluorescence, 13, 69-77(2003).

    [24] Xu D, Wang X Y, Huang Y G et al. Position-dependent property of resonant dipole: dipole interaction mediated by localized surface plasmon of an Ag nanosphere[J]. Chinese Physics B, 24, 024205(2015).

    [25] Shokoufi N, Heshi S V. Enhancmentation of photo-thermal lens of fluorescence molecules by fluorescence resonance energy transfer mechanism[J]. Journal of Fluorescence, 31, 587-593(2021).

    [26] Fiscelli G, Rizzuto L, Passante R. Resonance energy transfer between two atoms in a conducting cylindrical waveguide[J]. Physical Review A, 98, 013849(2018).

    [27] Martín-Cano D, Martín-Moreno L, García-Vidal F J et al. Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides[J]. Nano Letters, 10, 3129-3134(2010).

    [28] Tai C T[M]. Dyadic Green′s functions in electromagnetic theory(1994).

    [29] Zhao Y J, Tian M, Wang X Y et al. Quasi-static method and finite element method for obtaining the modifications of the spontaneous emission rate and energy level shift near a plasmonic nanostructure[J]. Optics Express, 26, 1390-1401(2018).

    [30] Tian M, Huang Y G, Wen S S et al. Finite-element method for obtaining the regularized photon Green function in lossy material[J]. EPL, 126, 13001(2019).

    [31] Zhao Y J, Tian M, Huang Y G et al. Renormalization of photon dyadic Green function by finite element method and its applications in the study of spontaneous emission rate and energy level shift[J]. Acta Physica Sinica, 67, 193102(2018).

    [32] Wen S S, Tian M, Yang H et al. Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission[J]. Chinese Physics B, 30, 027801(2021).

    [33] Martín-Cano D, González-Tudela A, Martín-Moreno L et al. Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides[J]. Physical Review B, 84, 235306(2011).

    [34] Novotny L, Hecht B[M]. Principles of nano-optics(2009).

    [35] Zhao L M, Guan J F. Numerical study on the modal characteristics of silicon-based hybrid plasmonic waveguides[J]. Infrared and Laser Engineering, 44, 1329-1334(2015).

    Tools

    Get Citation

    Copy Citation Text

    jie Liu, Xuanren Chen, Xiaoyun Wang, Yonggang Huang. Enhancement of Resonance Energy Transfer in Surface Plasmon-Photon Hybrid Waveguide[J]. Acta Optica Sinica, 2022, 42(15): 1513002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Jan. 27, 2022

    Accepted: Mar. 7, 2022

    Published Online: Aug. 4, 2022

    The Author Email: Wang Xiaoyun (wxyyun@163.com), Huang Yonggang (huang122012@163.com)

    DOI:10.3788/AOS202242.1513002

    Topics