Laser & Optoelectronics Progress, Volume. 60, Issue 12, 1228011(2023)

Remote Sensing Small Object Detection Based on Cross-Layer Attention Enhancement

Xingbo Han1,2 and Fan Li1,2、*
Author Affiliations
  • 1Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, Yunnan, China
  • 2Yunnan Key Laboratory of Artificial Intelligence, Kunming 650504, Yunnan, China
  • show less
    Figures & Tables(13)
    Details of YOLOv5 network
    Overall structure of the proposed model
    ResCatPAN structure
    ResCat structure
    Overall structure of the cross-layer attention. (a) Complete flow of the cross-layer attention; (b) catt module of the cross-layer attention; (c) satt module of the cross-layer attention
    Distribution statistics of label boxes in the data set. (a) Distribution of the size of the label box; (b) distribution of the center points of the label box
    Effect analysis on hyperparameter γ. (a) Influence of hyperparameter γ on detection performance for small object; (b) influence of hyperparameter γ on detection performance for medium object; (c) influence of hyperparameter γ on detection performance for large object; (d) influence of hyperparameter γ on detection performance for object
    Heat map generated by the proposed CLAT module by using the Grad-CAM method
    Effect contrast of the proposed model and baseline on the test set. (a) baseline; (b) proposed model
    • Table 1. Contrast experiment

      View table

      Table 1. Contrast experiment

      MethodBackboneAPs /%mAP /%
      SSDVGG1658.6
      YOLOv3Darknet-5311.657.1
      Faster R-CNN with FPNResNet‐10165.1
      Mask R-CNN with FPNResNet‐10165.2
      Libra R-CNNResNet‐10114.979.7
      Dynamic R-CNNResNet5012.177.3
      YOLOxDarknet-5317.385.7
      YOLOv5x6CSPDark-5319.986.6
      Proposed methodCSPDark-5323.486.4
    • Table 2. Ablation experiment

      View table

      Table 2. Ablation experiment

      BaselineRCPCLATmAP /%APs /%APm /%APl /%
      85.517.552.075.6
      85.421.651.775.4
      86.219.252.276.1
      86.423.452.375.9
    • Table 3. Sample distribution of the DIOR dataset

      View table

      Table 3. Sample distribution of the DIOR dataset

      ClassNumber of samplesClassNumber of samplesClassNumber of samplesClassNumber of samples
      golf-field881dam824stadium1003airport1071
      train-station811chimney1340harbor4447bridge3161
      expressway-service-area1743basketball-court2658overpass2478airplane8100
      expressway-toll-station1028ground-track-field2390windmill4371vehicle32180
      baseball-field4674tennis-court9621storage-tank20717ship50207
    • Table 4. Time-consuming comparison

      View table

      Table 4. Time-consuming comparison

      ModelBackboneTime /s
      baselineCSPDark-530.06
      Proposed modelCSPDark-530.09
    Tools

    Get Citation

    Copy Citation Text

    Xingbo Han, Fan Li. Remote Sensing Small Object Detection Based on Cross-Layer Attention Enhancement[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1228011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: May. 31, 2022

    Accepted: Jul. 14, 2022

    Published Online: Jun. 5, 2023

    The Author Email: Fan Li (478263823@qq.com)

    DOI:10.3788/LOP221744

    Topics