Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1962(2025)

Influences of Modified Montmorillonite on the High-Temperature Energy Storage Performance of Polyetherimide Dielectric Composites

LI Shiheng, ZHANG Baojing, ZHU Chaoqiong, CAI Ziming, and FENG Peizhong
Author Affiliations
  • School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • show less
    References(34)

    [1] [1] YANG M H, ZHAO Y L, WANG Z P, et al. Surface ion-activated polymer composite dielectrics for superior high-temperature capacitive energy storage[J]. Energy Environ Sci, 2024, 17(4): 1592–1602.

    [3] [3] LIU H X, ZHU W X, MAO Q, et al. Single-crystalline BaZr0.2 Ti0.8 O3 membranes enabled high energy density in PEI-based composites for high-temperature electrostatic capacitors[J]. Adv Mater, 2023, 35(22): e2300962.

    [4] [4] LI S H, PAN J H, LUO B C, et al. Nonpolar sub-10 nm TiO2 nanocrystal for high energy density polypropylene nanocomposites[J]. Nano Energy, 2024, 121: 109237.

    [6] [6] YANG M Z, LI H Y, WANG J, et al. Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200℃[J]. Nat Energy, 2024, 9: 143–153.

    [7] [7] ZHOU Y, YUAN C, WANG S J, et al. Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage[J]. Energy Storage Mater, 2020, 28: 255–263.

    [8] [8] XIONG J, FAN X, LONG D J, et al. Significant improvement in high-temperature energy storage performance of polymer dielectricsviaconstructing a surface polymer carrier trap layer[J]. J Mater Chem A, 2022, 10(46): 24611–24619.

    [9] [9] YANG M C, WANG S J, FU J, et al. Quantum size effect to induce colossal high-temperature energy storage density and efficiency in polymer/inorganic cluster composites[J]. Adv Mater, 2023, 35(30): e2301936.

    [11] [11] YANG M Z, ZHOU L, LI X, et al. Polyimides physically crosslinked by aromatic molecules exhibit ultrahigh energy density at 200 ℃[J]. Adv Mater, 2023, 35(35): e2302392.

    [12] [12] YUAN C, ZHOU Y, ZHU Y J, et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage[J]. Nat Commun, 2020, 11(1): 3919.

    [13] [13] WANG Y F, ZHOU J R, KONSTANTINOU A C, et al. Sandwiched polymer nanocomposites reinforced by two-dimensional interface nanocoating for ultrahigh energy storage performance at elevated temperatures[J]. Small, 2023, 19(24): e2208105.

    [14] [14] YU C, WANG J, YAN J J, et al. Langmuir–Blodgett assisted alignment of 2D nanosheets in polymer nanocomposites for high-temperature dielectric energy storage applications[J]. J Mater Chem C, 2024, 12(13): 4728–4736.

    [15] [15] ZHU J, LIU X L, GEIER M L, et al. Layer-by-layer assembled 2D montmorillonite dielectrics for solution-processed electronics[J]. Adv Mater, 2016, 28(1): 63–68.

    [16] [16] WANG Y F, LI Z Z, WU C, et al. High-temperature dielectric polymer nanocomposites with interposed montmorillonite nanosheets[J]. Chem Eng J, 2020, 401: 126093.

    [17] [17] WANG Y F, LI Z Z, WU C, et al. Polyamideimide dielectric with montmorillonite nanosheets coating for high-temperature energy storage[J]. Chem Eng J, 2022, 437: 135430.

    [18] [18] ZHANG B Y, LIU J J, REN M, et al. Reviving the “Schottky” barrier for flexible polymer dielectrics with a superior 2D nanoassembly coating[J]. Adv Mater, 2021, 33(34): 2101374.

    [19] [19] TOMER V, POLIZOS G, RANDALL C A, et al. Polyethylene nanocomposite dielectrics: Implications of nanofiller orientation on high field properties and energy storage[J]. 2011, 109(7): 074113.

    [20] [20] WANG Y F, LI Z Z, MORAN T J, et al. Interfacial 2D montmorillonite nanocoatings enable sandwiched polymer nanocomposites to exhibit ultrahigh capacitive energy storage performance at elevated temperatures[J]. Adv Sci, 2022, 9(35): e2204760.

    [21] [21] WU C, LACHANCE A M, BAFERANI M A, et al. Scalable self-assembly interfacial engineering for high-temperature dielectric energy storage[J]. iScience, 2022, 25(7): 104601.

    [22] [22] ZHU T G, ZHAO H, ZHANG N, et al. Ultrahigh energy storage density in poly(vinylidene fluoride)-based composite dielectricsviaconstructing the electric potential well[J]. Adv Energy Mater, 2023, 13(11): 2203587.

    [23] [23] BAO Z W, HOU C M, SHEN Z H, et al. Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites[J]. Adv Mater, 2020, 32(25): e1907227.

    [24] [24] NIU M Y, YANG H M, ZHANG X C, et al. Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture[J]. ACS Appl Mater Interfaces, 2016, 8(27): 17312–17320.

    [25] [25] HA B, CHAR K. Conformational behavior of dodecyldiamine inside the confined space of montmorillonites[J]. Langmuir, 2005, 21(18): 8471–8477.

    [26] [26] BAGHERI-KAZEMABAD S, FOX D, CHEN Y H, et al. Morphology, rheology and mechanical properties of polypropylene/ethylene–octene copolymer/clay nanocomposites: Effects of the compatibilizer[J]. Compos Sci Technol, 2012, 72(14): 1697–1704.

    [28] [28] LIU X J, CHENG M, ZHANG Y Y, et al. High-temperature polymer dielectric films with excellent energy storage performance utilizing inorganic outerlayers[J]. Compos Sci Technol, 2024, 245: 110305.

    [29] [29] REN L L, LI H, XIE Z L, et al. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core–shell nanostructured nanofillers[J]. Adv Energy Mater, 2021, 11(28): 2101297.

    [30] [30] YANG M H, WANG Z P, ZHAO Y L, et al. Unifying and suppressing conduction losses of polymer dielectrics for superior high-temperature capacitive energy storage[J]. Adv Mater, 2024, 36(52): e2309640.

    [32] [32] CHENG S, ZHOU Y, LI Y S, et al. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage[J]. Energy Storage Mater, 2021, 42: 445–453.

    [33] [33] LIU G, ZHANG T D, FENG Y, et al. Sandwich-structured polymers with electrospun boron nitrides layers as high-temperature energy storage dielectrics[J]. Chem Eng J, 2020, 389: 124443.

    [34] [34] LI H, GADINSKI M R, HUANG Y Q, et al. Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge–discharge efficiency[J]. Energy Environ Sci, 2020, 13(4): 1279–1286.

    [35] [35] SUN W D, LU X J, JIANG J Y, et al. Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures[J]. 2017, 121(24): 244101.

    [36] [36] AI D, LI H, ZHOU Y, et al. Tuning nanofillers inin situprepared polyimide nanocomposites for high-temperature capacitive energy storage[J]. Adv Energy Mater, 2020, 10(16): 1903881.

    [37] [37] LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(7562): 576–579.

    [38] [38] ZHOU Y, LI Q, DANG B, et al. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures[J]. Adv Mater, 2018, 30(49): e1805672.

    [39] [39] NIU Y J, DONG J F, HE Y F, et al. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface[J]. Nano Energy, 2022, 97: 107215.

    Tools

    Get Citation

    Copy Citation Text

    LI Shiheng, ZHANG Baojing, ZHU Chaoqiong, CAI Ziming, FENG Peizhong. Influences of Modified Montmorillonite on the High-Temperature Energy Storage Performance of Polyetherimide Dielectric Composites[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1962

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 19, 2024

    Accepted: Aug. 12, 2025

    Published Online: Aug. 12, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240743

    Topics