Acta Optica Sinica, Volume. 40, Issue 1, 0111004(2020)
Speckle Correlation Imaging: from Point Spread Functions to Light Field Plenoptics
[4] Bifano T. MEMS deformable mirrors[J]. Nature Photonics, 5, 21-23(2011).
[5] Hong P L, Ojambati O S, Lagendijk A et al. Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping[J]. Optica, 5, 844-849(2018).
[7] He H X, Wong K S. An improved wavefront determination method based on phase conjugation for imaging through thin scattering medium[J]. Journal of Optics, 18, 085604(2016).
[8] Wang F J, He H X, Zhuang H C et al. Controlled light field concentration through turbid biological membrane for phototherapy[J]. Biomedical Optics Express, 6, 2237-2245(2015).
[9] Wang K, Sun W Z, Richie C T et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue[J]. Nature Communications, 6, 7276(2015).
[10] Huang D, Swanson E, Lin C et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[11] Velten A, Willwacher T, Gupta O et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature Communications, 3, 745(2012).
[12] Satat G, Heshmat B, Raviv D et al. All photons imaging through volumetric scattering[J]. Scientific Reports, 6, 33946(2016).
[13] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).
[15] Yang J M, Li J W, He S L et al. Angular-spectrum modeling of focusing light inside scattering media by optical phase conjugation[J]. Optica, 6, 250-256(2019).
[16] Qiao M, Liu H L, Han S S. Bidirectional image transmission through physically thick scattering media using digital optical phase conjugation[J]. Optics Express, 26, 33066-33079(2018).
[17] Yu Y W, Sun C C, Liu X C et al. Continuous amplified digital optical phase conjugator for focusing through thick, heavy scattering medium[J]. OSA Continuum, 2, 703-714(2019).
[18] Wang Y M, Judkewitz B. DiMarzio C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 3, 928(2012).
[20] Baek Y S, Lee K R, Park Y K. High-resolution holographic microscopy exploiting speckle-correlation scattering matrix[J]. Physical Review Applied, 10, 024053(2018).
[21] Zhuang B, Xu C F, Geng Y et al. An early study on imaging 3D objects hidden behind highly scattering media: a round-trip optical transmission matrix method[J]. Applied Sciences, 8, 1036(2018).
[22] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).
[23] Popoff S, Lerosey G, Fink M et al. Image transmission through an opaque material[J]. Nature Communications, 1, 81(2010).
[24] Li S P, Zhong J G. Dynamic imaging through turbid media based on digital holography[J]. Journal of the Optical Society of America A, 31, 480-486(2014).
[27] Freund I. Looking through walls and around corners[J]. Physica A: Statistical Mechanics and its Applications, 168, 49-65(1990).
[28] Newman J A, Webb K J. Imaging optical fields through heavily scattering media[J]. Physical Review Letters, 113, 263903(2014).
[29] Stern G, Katz O. Noninvasive focusing through scattering layers using speckle correlations[J]. Optics Letters, 44, 143-146(2019).
[30] Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 5, 1181-1190(2018).
[31] Cua M, Zhou E H, Yang C. Imaging moving targets through scattering media[J]. Optics Express, 25, 3935-3945(2017).
[32] Wu T F, Katz O, Shao X P et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optics Letters, 41, 5003-5006(2016).
[33] Shi Y Y, Liu Y W, Wang J M et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax[J]. Applied Physics Letters, 110, 231101(2017).
[34] Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect[J]. Optica, 3, 71-74(2016).
[38] Antipa N, Kuo G, Heckel R et al. DiffuserCam: lensless single-exposure 3D imaging[J]. Optica, 5, 1-9(2018).
[39] Valent E, Silberberg Y. Scatterer recognition via analysis of speckle patterns[J]. Optica, 5, 204-207(2018).
[40] Saunders C, Murray-Bruce J, Goyal V K. Computational periscopy with an ordinary digital camera[J]. Nature, 565, 472-475(2019).
[41] Idell P S, Fienup J R, Goodman R S. Image synthesis from nonimaged laser-speckle patterns[J]. Optics Letters, 12, 858-860(1987).
[42] Voelz D G, Gonglewski J D, Idell P S. Image synthesis from nonimaged laser-speckle patterns: comparison of theory, computer simulation, and laboratory results[J]. Applied Optics, 30, 3333-3344(1991).
[43] Zhuang H C, He H X, Xie X S et al. High speed color imaging through scattering media with a large field of view[J]. Scientific Reports, 6, 32696(2016).
[44] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media[J]. Scientific Reports, 6, 33558(2016).
[45] Feng S C, Kane C, Lee P A et al. Correlations and fluctuations of coherent wave transmission through disordered media[J]. Physical Review Letters, 61, 834-837(1988).
[46] Freund I, Rosenbluh M, Feng S C. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 61, 2328-2331(1988).
[47] He H X. Imaging restoration from the scattering light by wavefront shaping technique Guangzhou: Sun Yat-sen[D]. University, 30-31(2014).
[48] Judkewitz B, Horstmeyer R, Vellekoop I M et al. Translation correlations in anisotropically scattering media[J]. Nature Physics, 11, 684-689(2015).
[49] Bertolotti J. Unravelling the tangle[J]. Nature Physics, 11, 622-623(2015).
[50] Richardson W H. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America, 62, 55-59(1972).
[51] Lucy L B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 79, 745-754(1974).
[52] Fan J Q, Koo J Y. Wavelet deconvolution[J]. IEEE Transactions on Information Theory, 48, 734-747(2002).
[53] Neelamani R, Choi H, Baraniuk R. ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems[J]. IEEE Transactions on Signal Processing, 52, 418-433(2004).
[54] Xie X S, Chen Y Z, Yang K et al. Harnessing the point-spread function for high-resolution far-field optical microscopy[J]. Physical Review Letters, 113, 263901(2014).
[55] Li L, Li Q, Sun S et al. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function[J]. Optics Letters, 43, 1670-1673(2018).
[56] Tang D L, Sahoo S K, Tran V et al. Single-shot large field of view imaging with scattering media by spatial demultiplexing[J]. Applied Optics, 57, 7533-7538(2018).
[57] Liao M H, Lu D J, Pedrini G et al. Extending the depth-of-field of imaging systems with a scattering diffuser[J]. Scientific Reports, 9, 7165(2019).
[58] Xie X S, Zhuang H C, He H X et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation[J]. Scientific Reports, 8, 4585(2018).
[59] Goodman J W. Speckle phenomena in optics: theory and applications[M]. USA: Roberts and Company Publishers, 75-77(2007).
[60] Chen Q Q, He H X, Xu X Q et al. Memory effect based filter to improve imaging quality through scattering layers[J]. IEEE Photonics Journal, 10, 6901010(2018).
[61] Xu X Q, Xie X S, He H X et al. Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function[J]. Optics Express, 25, 32829-32840(2017).
[62] Yang W Q, Li G W, Guohai S T. Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports, 8, 9614(2018).
[66] Wang Z P, Jin X, Dai Q H. Non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution[J]. Scientific Reports, 8, 9088(2018).
[67] Wu T F, Dong J, Shao X P et al. Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity[J]. Optics Express, 25, 27182-27194(2017).
[68] Han P L, Liu F, Yang K et al. Active underwater descattering and image recovery[J]. Applied Optics, 56, 6631-6638(2017).
[69] Li X H, Greenberg J A, Gehm M E. Single-shot multispectral imaging through a thin scatterer[J]. Optica, 6, 864-871(2019).
[70] Sahoo S K, Tang D L, Dang C. Single-shot multispectral imaging with a monochromatic camera[J]. Optica, 4, 1209-1213(2017).
[71] Xu X Q, Xie X S, Thendiyammal A et al. Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference[J]. Optics Express, 26, 15073-15083(2018).
[72] Liang J B, Cai J F, Xie J P et al. Depth-resolved and auto-focus imaging through scattering layer with wavelength compensation[J]. Journal of the Optical Society of America A, 36, 944-949(2019).
[73] Xie J P, Xie X S, Gao Y M et al. Depth detection capability and ultra-large depth of field in imaging through a thin scattering layer[J]. Journal of Optics, 21, 085606(2019).
Get Citation
Copy Citation Text
Xiangsheng Xie, Yikun Liu, Haowen Liang, Jianying Zhou. Speckle Correlation Imaging: from Point Spread Functions to Light Field Plenoptics[J]. Acta Optica Sinica, 2020, 40(1): 0111004
Category: Special Issue on Computational Optical Imaging
Received: Sep. 5, 2019
Accepted: Nov. 6, 2019
Published Online: Jan. 6, 2020
The Author Email: Zhou Jianying (stszjy@mail.sysu.edu.cn)