Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1215008(2025)

Efficient Printed Circuit Board Defect Segmentation Technology Based on YOLO Prompts and ICT-ViT

Tieqiang Sun1, Hongjian Yu1、*, Can Zhang1, Yidong Yuan1, and Aoran Sun2
Author Affiliations
  • 1College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, Hebei , China
  • 2School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu , China
  • show less
    Figures & Tables(19)
    Improved MobileSAMv2 network structure
    Feature importance
    Location information of PCB defects extracted by YOLOv8
    Schematic diagrams of MHA and SSA network structure. (a) MHA; (b) SSA
    ICT-ViT network structure
    Pointwise convolution process
    Structure diagrams of Adapters module and Ad-Transformer model
    Geometric relation of IoU
    Qualitative comparison of ViT models
    Effect of glitch defect segmentation under mask prompting
    Small target defect segmentation effect for PCB solid templates
    Inference time of different models on the solid templates
    Visualizations of simulating different environments
    • Table 1. Quantitative comparison of ViT models

      View table

      Table 1. Quantitative comparison of ViT models

      ViT modelmIoUmScoreInference time /msParameters /106
      ViT-h0.9730.96616.2637
      ViT-l0.9550.96214.7308
      ViT-b0.9360.89212.090
      TinyViT-21M0.9710.95710.928
      EfficientViT-M50.9520.9218.713
      ICT-ViT0.9760.9879.935
    • Table 2. Comparison of evaluation indexes of different mask modes

      View table

      Table 2. Comparison of evaluation indexes of different mask modes

      Mask mode

      Adjust

      parameter

      ScoreInference time /ms
      Missing_holeMouse_biteOpen_curcuitShortSpurSpurious_copper
      pointmask 1 is 20%0.9100.8220.9090.8910.9230.92011.9
      mask 2 is 40%0.9250.8550.8980.8580.8910.88410.3
      mask 3 is 60%0.5900.4520.6210.5380.6060.60110.5
      bboxmask 1 is 20%0.9200.8520.9400.9220.9340.91611.2
      mask 2 is 40%0.8750.8820.8870.8870.9360.90210.7
      mask 3 is 60%0.6550.5090.5980.6260.6630.60410.7
    • Table 3. Ablation experiments

      View table

      Table 3. Ablation experiments

      ModulemIoUmScoreInference time /msParameters /106
      None0.9200.83211.932.22
      YOLOv8-PCB0.9450.86811.235.23
      SSA0.9420.85510.230.52
      ICT-ViT0.9550.89510.539.17
      Adapters0.9410.84810.732.52
      YOLOv8-PCB+SSA0.9500.84510.533.53
      YOLOv8-PCB+SSA+ICT-ViT0.9650.8709.840.48
      YOLOv8-PCB+SSA+ICT-ViT+Adapters0.9760.8899.740.78
    • Table 4. Comparison of defect segmentation of small targets of solid templates

      View table

      Table 4. Comparison of defect segmentation of small targets of solid templates

      Defect classMobileSAMv2Proposed
      mIoUmScoreInference time /msmIoUmScoreInference time /ms
      Missing_hole0.8720.84510.90.9000.8019.8
      Mouse_bite0.9430.99913.20.9100.97712.7
      Open_curcuit0.8500.81415.90.9410.94611.7
      Short0.8080.82517.00.9050.91414.0
      Spur0.8050.82113.30.8840.91911.9
      Spurious_copper0.7870.84210.90.9170.96010.3
    • Table 5. Comparison of performance of different models on solid templates

      View table

      Table 5. Comparison of performance of different models on solid templates

      ModelmIoUmScoreInference time /msModel size /MB
      FastSAM-s0.8630.72112.622.7
      EfficientSAM0.8810.83511.239.0
      MobileSAMv20.8440.85813.538.8
      Proposed0.9100.92011.750.2
    • Table 6. Comparison of the influence of different production process interference on model performance

      View table

      Table 6. Comparison of the influence of different production process interference on model performance

      Disturbance

      type

      MobileSAMv2Proposed
      mIoUmScoreInference time /msmIoUmScoreInference time /ms
      Normal0.9200.83211.90.9760.8899.7
      Dent0.6210.77310.60.6240.7659.3
      Scratch0.6120.65210.80.7830.6359.2
      Spot0.8030.85210.00.8910.9359.0
    Tools

    Get Citation

    Copy Citation Text

    Tieqiang Sun, Hongjian Yu, Can Zhang, Yidong Yuan, Aoran Sun. Efficient Printed Circuit Board Defect Segmentation Technology Based on YOLO Prompts and ICT-ViT[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1215008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 27, 2024

    Accepted: Jan. 2, 2025

    Published Online: Jun. 12, 2025

    The Author Email: Hongjian Yu (yhjadd@163.com)

    DOI:10.3788/LOP242339

    CSTR:32186.14.LOP242339

    Topics