Optics and Precision Engineering, Volume. 32, Issue 7, 1075(2024)

Object detection of steel surface defect based on multi-scale enhanced feature fusion

Shanling LIN1,2, Xueling PENG1,2, Dong WANG1,2, Zhixian LIN1,2,3, Jianpu LIN1,2、*, and Tailiang GUO2,3
Author Affiliations
  • 1School of Advanced Manufacturing, Fuzhou University, Quanzhou362252, China
  • 2China Fujian Photoelectric Information Science and Technology Innovation Laboratory, Fuzhou350116, China
  • 3School of Physics and Information Engineering, Fuzhou University, Fuzhou50116, China
  • show less
    Figures & Tables(9)
    Network structure of EFSSD-MV2 algorithm
    Adaptive Weighted Fusion(AWF) module
    Spatial Feature Enhancement(SFE) module
    Comparison of algorithm detection accuracy before and after improvement
    Comparison of class activation mapping output before and after algorithm improvement
    Comparison of sample detection results before and after algorithm improvement
    • Table 1. Ablation experiments for EFSSD-MV2 algorithm(1 M=106

      View table
      View in Article

      Table 1. Ablation experiments for EFSSD-MV2 algorithm(1 M=106

      方 法mAP/%mAPITSS/%参数量/M计算量(MFLOPs)
      SSD-MV273.6677.411.92568.68
      FSSD-MV276.1178.782.24808.16
      FSSD-MV2AWF77.3379.612.26808.66
      FSSD-MV2SFE77.1879.982.34952.54
      FSSD-MV2EFF77.8580.472.36952.67
    • Table 2. Comparison of experimental results with other lightweight target detection algorithms

      View table
      View in Article

      Table 2. Comparison of experimental results with other lightweight target detection algorithms

      方 法AP/%

      mAP

      /%

      模型大小

      /MB

      fps/

      (frame·s-1

      裂纹补丁杂质点蚀结疤刮痕
      YOLOv3-tiny1836.0988.9173.1165.4159.7783.7667.8433.1460.7
      YOLOv4-tiny1936.4687.6767.3779.4858.2681.6768.4922.4864.1
      YOLOv5n2038.4090.7080.9085.5065.6093.2075.7214.2591.8
      YOLOv6n2139.3092.6079.5085.2060.9095.8075.559.2986.8
      YOLOv7-tiny2230.0091.6083.8085.3065.6092.9074.8711.7585.0
      YOLOX-nano2343.3292.1479.6583.1066.2896.1876.787.2354.8
      SSDLite2442.5192.9374.8584.8468.2280.8574.0324.9868.0
      NanoDet253.0087.4054.4068.6030.0058.3050.2810.9874.8
      FastestDet2639.7086.8064.1079.4075.4083.1071.421.0897.7
      MutualGuide2751.0386.7281.7384.7866.6189.4776.7210.9668.6
      EFSSD-MV255.1391.9479.5488.2474.5793.4280.479.2766.4
    • Table 3. Effect of hyperparameter k on mAP metrics of EFSSD-MV2 algorithm

      View table
      View in Article

      Table 3. Effect of hyperparameter k on mAP metrics of EFSSD-MV2 algorithm

      kmAPATSSmAPITSS
      576.5578.44
      1079.1079.38
      1579.5379.44
      2079.0479.73
      2579.0480.03
      3079.8180.47
      3579.7079.98
      4079.0679.33
      4578.7278.26
      5078.9078.18
    Tools

    Get Citation

    Copy Citation Text

    Shanling LIN, Xueling PENG, Dong WANG, Zhixian LIN, Jianpu LIN, Tailiang GUO. Object detection of steel surface defect based on multi-scale enhanced feature fusion[J]. Optics and Precision Engineering, 2024, 32(7): 1075

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 24, 2023

    Accepted: --

    Published Online: May. 28, 2024

    The Author Email: Jianpu LIN (ljp@fzu.edu.cn)

    DOI:10.37188/OPE.20243207.1075

    Topics