Remote Sensing Technology and Application, Volume. 40, Issue 4, 816(2025)
A Review of Remote Sensing Detection and Identification Methods for Underground Coal Fire Areas
[1] [1] ZHANG J, WAGNER W, PRAKASH A,et al. Detecting coal fires using remote sensing techniques[J]. International Journal of Remote Sensing, 2004, 25(16): 3193-3220. DOI: 10.1080/01431160310001620812
[2] [2] SYED T H, RIYAS M J, KUENZER C. Remote sensing of coal fires in India: A review[J].Earth-Science Reviews, 2018, 187: 338-355. DOI: 10.1016/j.earscirev.2018.10.009
[3] [3] MENG Q F, MA G Q, LI L L,et al. An optimized detection approach to subsurface coalfield spontaneous combustion areas using airborne magnetic data[J]. Remote Sensing, 2025, 17(7): 1185. DOI: 10.3390/rs17071185
[5] [5] WANG Y J, GUO M Z, THANH H V,et al. Advanced machine learning schemes for prediction CO2 flux based experimental approach in underground coal fire areas[J]. Journal of Advanced Research, 2025, 70: 587-601. DOI: 10.1016/j.jare.2024.10.034
[6] [6] HU Z Q, XIA Q. An integrated methodology for monitoring spontaneous combustion of coal waste dumps based on surface temperature detection[J]. Applied Thermal Engineering, 2017, 122: 27-38. DOI: 10.1016/j.applthermaleng.2017.05.019
[8] [8] GU Y F, LI H D, DOU L H,et al. Advance in detection and management for underground coal fires: A global technological overview[J]. Combustion Science and Technology, 2024: 1-38. DOI: 10.1080/00102202.2024.2365260
[12] [12] SHAO Z L, WANG D M, WANG Y M,et al. Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China[J]. Journal of Applied Geophysics, 2014, 104: 64-74. DOI: 10.1016/j.jappgeo.2014.02.014
[14] [14] BISWAL S S, RAVAL S, GORAI A K. Delineation and mapping of coal mine fire using remote sensing data-A review[J]. International Journal of Remote Sensing, 2019, 40(17): 6499-6529. DOI: 10.1080/01431161.2018.1547455
[16] [16] MUJAWDIYA R, CHATTERJEE R S, KUMAR D. MODIS land surface temperature time series decomposition for detecting and characterizing temporal intensity variations of coal fire induced thermal anomalies in Jharia coalfield, India[J]. Geocarto International, 2022, 37(8): 2160-2174. DOI: 10.1080/10106049.2020.1818853
[17] [17] KUENZER C, STRACHER G B. Geomorphology of coal seam fires[J]. Geomorphology, 2012, 138(1): 209-222. DOI: 10.1016/j.geomorph.2011.09.004
[18] [18] IDE T S, POLLARD D, ORR F M. Fissure formation and subsurface subsidence in a coalbed fire[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 81-93. DOI: 10.1016/j.ijrmms.2009.05.007
[20] [20] SAINI V, ARORA M K, GUPTA R P. Relationship between surface temperature and SAVI using Landsat data in a coal mining area in India[C]//Proceedings of the Land Surface and Cryosphere Remote Sensing III. SPIE, 2016: 987711.. DOI: 10.1117/12.2228094
[22] [22] STRACHER G B, PRAKASH A, SOKOL E V. Coal and peat fires: a global perspective: volume 1: coal-geology and combustion[M]. Amsterdam: Elsevier, 2010.
[23] [23] KUENZER C, ZHANG J Z, TETZLAFF A,et al. Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-Central China[J]. Applied Geography, 2007, 27(1): 42-62. DOI: 10.1016/j.apgeog.2006.09.007
[24] [24] SARAF A K, PRAKASH A, SENGUPTA S,et al. Landsat-TM data for estimating ground temperature and depth of subsurface coal fire in the Jharia coalfield, India[J]. International Journal of Remote Sensing, 1995, 16(12): 2111-2124. DOI: 10.1080/01431169508954545
[26] [26] GAUTAM R S, SINGH D, MITTAL A. An efficient contextual algorithm to detect subsurface fires with NOAA/AVHRR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7): 2005-2015. DOI: 10.1109/TGRS.2008.916631
[27] [27] KUENZER C, HECKER C, ZHANG J,et al. The potential of multidiurnal MODIS thermal band data for coal fire detection[J]. International Journal of Remote Sensing, 2008, 29(3): 923-944. DOI: 10.1080/01431160701352147
[31] [31] SONG Z Y, KUENZER C, ZHU H Q,et al. Analysis of coal fire dynamics in the Wuda syncline impacted by fire-fighting activities based on in situ observations and Landsat-8 remote sensing data[J]. International Journal of Coal Geology, 2015, 141: 91-102. DOI: 10.1016/j.coal.2015.03.008
[32] [32] CHEN S S, REN H Z, JIANG C C,et al. Urban land surface temperature retrieval from high spatial resolution thermal infrared image using a modified split-window algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5003216. DOI: 10.1109/TGRS.2023.3291708
[33] [33] OUYANG X Y, SUN Z C, ZHOU S G,et al. Urban land surface temperature retrieval with high-spatial resolution SDGSAT-1 thermal infrared data[J]. Remote Sensing of Environment, 2024, 312: 114320. DOI: 10.1016/j.rse.2024.114320
[35] [35] SHAO Z L, LIANG Y T, TIAN F C,et al. Constructing 3-D land surface temperature model of local coal fires using UAV thermal images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5002309. DOI: 10.1109/TGRS.2022.3176854
[36] [36] HE X Y, YANG X K, LUO Z,et al. Application of Unmanned Aerial Vehicle(UAV) thermal infrared remote sensing to identify coal fires in the Huojitu coal mine in Shenmu city, China[J]. Scientific Reports, 2020, 10: 13895. DOI: 10.1038/s41598-020-70964-5
[37] [37] RATHORE C S, WRIGHT R. Monitoring environmental impacts of surface coal mining[J]. International Journal of Remote Sensing, 1993, 14(6): 1021-1042. DOI: 10.1080/01431169308904394
[38] [38] YUAN G, WANG Y J, ZHAO F,et al. Accuracy assessment and scale effect investigation of UAV thermography for underground coal fire surface temperature monitoring[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102426. DOI: 10.1016/j.jag.2021.102426
[42] [42] KUENZER C, ZHANG J Z, JING L,et al. Thermal infrared remote sensing of surface and underground coal fires[M]. Dordrecht: Springer Netherlands, 2013: 429-451. DOI: 10.1007/978-94-007-6639-6_21
[43] [43] CRACKNELL A P, MANSOR S B. Detection of sub-surface coal fires using Landsat thematic mapper data[J]. International Archives of Photogrammetry and Remote Sensing, 1993, 29: 750-750.
[44] [44] CHATTERJEE R S. Coal fire mapping from satellite thermal IR data-A case example in Jharia Coalfield, Jharkhand, India[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 113-128. DOI: 10.1016/j.isprsjprs.2005.12.002
[45] [45] ROTHERY D A, FRANCIS P W, WOOD C A. Volcano monitoring using short wavelength infrared data from satellites[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B7): 7993-8008. DOI: 10.1029/JB093iB07p07993
[46] [46] YU Y F, XING L X, PAN J,et al. Study of high temperature targets identification and temperature retrieval experimental model in SWIR remote sensing based Landsat 8[J].International Journal of Applied Earth Observation and Geoinformation, 2016, 46: 56-62. DOI: 10.1016/j.jag.2015.11.011
[47] [47] REDDY C S S, SRIVASTAV S K, BHATTACHARYA A. Application of thematic mapper short wavelength infrared data for the detection and monitoring of high temperature related geoenvironmental features[J]. International Journal of Remote Sensing, 1993, 14(17): 3125-3132. DOI: 10.1080/01431169308904425
[48] [48] ZHANG X M, CASSELLS C J S, VAN GENDEREN J L. Multi-sensor data fusion for the detection of underground coal fires[J]. Geologie En Mijnbouw, 1998, 77(2): 117-128. DOI: 10.1023/A: 1003526100075
[49] [49] HUO H Y, JIANG X G, SONG X F,et al. Detection of coal fire dynamics and propagation direction from multi-temporal nighttime Landsat SWIR and TIR data: A case study on the Rujigou coalfield, NorthWest(NW) China[J].Remote Sensing, 2014, 6(2): 1234-1259. DOI: 10.3390/rs6021234
[50] [50] RAJU A, SINGH A, KUMAR S,et al. Temporal monitoring of coal fires in Jharia Coalfield, India[J]. Environmental Earth Sciences, 2016, 75(12): 989. DOI: 10.1007/s12665-016-5799-7
[51] [51] PRAKASH A, GUPTA R P, SARAF A K. A Landsat TM based comparative study of surface and subsurface fires in the Jharia Coalfield, India[J].International Journal of Remote Sensing, 1997, 18(11): 2463-2469. DOI: 10.1080/014311697217738
[52] [52] ZHANG X, ZHANG J, KUENZER C,et al. Capability evaluation of 3~5 m and 8~12.5 μm airborne thermal data for underground coal fire detection[J]. International Journal of Remote Sensing, 2004, 25(12): 2245-2258. DOI: 10.1080/01431160310001618112
[55] [55] RAJU A, GUPTA R P, PRAKASH A. Delineation of coalfield surface fires by thresholding Landsat TM-7 day-time image data[J]. Geocarto International, 2013, 28(4): 343-363. DOI: 10.1080/10106049.2012.710651
[56] [56] KUENZER C, ZHANG J, LI J,et al. Detecting unknown coal fires: Synergy of automated coal fire risk area delineation and improved thermal anomaly extraction[J]. International Journal of Remote Sensing, 2007, 28(20): 4561-4585. DOI: 10.1080/01431160701250432
[57] [57] ZHOU S G, ZHOU K F, CUI Y,et al. Exploratory data analysis and singularity mapping in geochemical anomaly identification in Karamay, Xinjiang, China[J]. Journal of Geochemical Exploration, 2015, 154: 171-179. DOI: 10.1016/j.gexplo.2014.12.007
[60] [60] JIANG W G, ZHU X H, WU J J,et al. Retrieval and analysis of coal fire temperature in Wuda coalfield, Inner Mongolia, China[J]. Chinese Geographical Science, 2011, 21(2): 159-166. DOI: 10.1007/s11769-011-0455-3
[61] [61] ROY P, GUHA A, KUMAR K V. An approach of surface coal fire detection from ASTER and Landsat-8 thermal data: Jharia coal field, India[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 120-127. DOI: 10.1016/j.jag.2015.03.009
[63] [63] DU X M, BERNARDES S, CAO D Y,et al. Self-adaptive gradient-based thresholding method for coal fire detection based on ASTER data: Part 2, validation and sensitivity analysis[J]. Remote Sensing, 2015, 7(3): 2602-2626. DOI: 10.3390/rs70302602
[65] [65] WANG T, WANG Y J, ZHAO F,et al. A spatio-temporal temperature-based thresholding algorithm for underground coal fire detection with satellite thermal infrared and radar remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 110: 102805. DOI: 10.1016/j.jag.2022.102805
[67] [67] YU B, SHE J, LIU G X,et al. Coal fire identification and state assessment by integrating multitemporal thermal infrared and InSAR remote sensing data: A case study of Midong District, Urumqi, China[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 144-164. DOI: 10.1016/j.isprsjprs.2022.06.007
[68] [68] CHEN Y, SUO Z H, LI J,et al. Active-passive remote sensing identification of underground coal fire zones with joint constraints of temperature and surface deformation time series[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 17: 894-915.
[69] [69] NGUYEN T T, VU T D. Use of hot Spot analysis to detect underground coal fires from Landsat-8 TIRS data: A case study in the Khanh Hoa coal field, north-east of Vietnam[J]. The Environment and Natural Resources Journal, 2019, 17(3): 1-10. DOI: 10.32526/ennrj.17.3.2019.17
[70] [70] GAO Y Y, HAO M, WANG Y J,et al. Multi-scale coal fire detection based on an improved active contour model from Landsat-8 satellite and UAV images[J]. ISPRS International Journal of Geo-Information, 2021, 10(7): 449. DOI: 10.3390/ijgi10070449
[71] [71] GANGOPADHYAY P K, LAHIRI-DUTT K, SAHA K. Application of remote sensing to identify coalfires in the Raniganj Coalbelt, India[J]. International Journal of Applied Earth Observation and Geoinformation, 2006, 8(3): 188-195. DOI: 10.1016/j.jag.2005.09.001
[73] [73] HOFFMANN J, ROTH A, VOIGT S. Detecting coal fires in China using differential Interferometric Synthetic Aperture Radar (InSAR)[C]//Proceedings of the FRINGE 2003 Workshop (ESA SP-550). 2003: 1-5.
[74] [74] RIYAS M J, SYED T H, KUMAR H,et al. Detecting and analyzing the evolution of subsidence due to coal fires in Jharia Coalfield, India using Sentinel-1 SAR data[J]. Remote Sensing, 2021, 13(8): 1521. DOI: 10.3390/rs13081521
[75] [75] NG A H, GE L L, DU Z Y,et al. Satellite radar interferometry for monitoring subsidence induced by longwall mining activity using Radarsat-2, Sentinel-1 and ALOS-2 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 61: 92-103. DOI: 10.1016/j.jag.2017.05.009
[76] [76] JIA H Y, WANG Y J, GE D Q,et al. Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China)[J]. Remote Sensing of Environment, 2020, 247: 111899. DOI: 10.1016/j.rse.2020.111899
[78] [78] JO M J, JUNG H S, WON J S. Measurement of precise three-dimensional volcanic deformationsviaTerraSAR-X synthetic aperture radar interferometry[J]. Remote Sensing of Environment, 2017, 192: 228-237. DOI: 10.1016/j.rse. 2017.02.022
[79] [79] COSTANTINI M, FERRETTI A, MINATI F,et al. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data[J]. Remote Sensing of Environment, 2017, 202: 250-275. DOI: 10.1016/j.rse.2017.07.017
[80] [80] KARANAM V, MOTAGH M, GARG S,et al. Multi-sensor remote sensing analysis of coal fire induced land subsidence in Jharia Coalfields, Jharkhand, India[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102439. DOI: 10.1016/j.jag.2021.102439
[81] [81] ZHOU L F, ZHANG D R, WANG J,et al. Mapping land subsidence related to underground coal fires in the Wuda Coalfield (Northern China) using a small stack of ALOS PALSAR differential interferograms[J]. Remote Sensing, 2013, 5(3): 1152-1176. DOI: 10.3390/rs5031152
[83] [83] MASSONNET D, ROSSI M, CARMONA C,et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433): 138-142. DOI: 10.1038/364138a0
[84] [84] SANDWELL D T, PRICE E J. Phase gradient approach to stacking interferograms[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30183-30204. DOI: 10.1029/1998JB900008
[85] [85] ZHANG Y X, WANG Y J, HUO W Q,et al. Ground deformation monitoring over Xinjiang coal fire area by an adaptive ERA5-corrected stacking-InSAR method[J]. Remote Sensing, 2023, 15(5): 1444. DOI: 10.3390/rs15051444
[86] [86] JIANG L M, LIN H, MA J W,et al. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study[J]. Remote Sensing of Environment, 2011, 115(2): 257-268. DOI: 10.1016/j.rse.2010.08.008
[87] [87] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20. DOI: 10.1109/36.898661
[88] [88] BERARDINO P, FORNARO G, LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383. DOI: 10.1109/TGRS.2002.803792
[90] [90] MA C, CHENG X Q, YANG Y L,et al. Investigation on mining subsidence based on multi-temporal InSAR and time-series analysis of the small baseline subset—Case study of working faces 22201-1/2 in Bu'ertai mine, Shendong Coalfield, China[J]. Remote Sensing, 2016, 8(11): 951. DOI: 10.3390/rs8110951
[91] [91] FERRETTI A, FUMAGALLI A, NOVALI F,et al. A new algorithm for processing interferometric data-stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3460-3470. DOI: 10.1109/TGRS.2011.2124465
[93] [93] TIAN Z M, FAN H D, CAO F,et al. Monitoring surface subsidence using distributed scatterer InSAR with an improved statistically homogeneous pixel selection method in coalfield fire zones[J]. Remote Sensing, 2023, 15(14): 3574. DOI: 10.3390/rs15143574
[95] [95] LIU J L, WANG Y J, LI Y,et al. Underground coal fires identification and monitoring using time-series InSAR with persistent and distributed scatterers: A case study of Miquan coal fire zone in Xinjiang, China[J]. IEEE Access, 2019, 7: 164492-164506.
[98] [98] SONG Z Y, KUENZER C. Spectral reflectance(400-2 500 nm)properties of coals, adjacent sediments, metamorphic and pyrometamorphic rocks in coal-fire areas: A case study of Wuda coalfield and its surrounding areas, northern China[J]. International Journal of Coal Geology, 2017, 171: 142-152. DOI: 10.1016/j.coal.2017.01.008
[101] [101] KUENZER C. Demarcating coal fire risk areas based on spectral test sequences and partial unmixing using multi sensor remote sensing data[D]. Vienna, Austria: Technical University Vienna, 2005.
[103] [103] XU Y, FAN H D, DANG L B. Monitoring coal seam fires in Xinjiang using comprehensive thermal infrared and time series InSAR detection[J]. International Journal of Remote Sensing, 2021, 42(6): 2220-2245. DOI: 10.1080/01431161. 2020.1823045
[104] [104] WANG Y J, TIAN F, HUANG Y,et al. Monitoring coal fires in Datong coalfield using multi-source remote sensing data[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3421-3428. DOI: 10.1016/S1003-6326(15)63977-2
[105] [105] LIU J L, WANG Y J, YAN S Y,et al. Underground coal fire detection and monitoring based on Landsat 8 and Sentinel-1 data sets in Miquan fire area, Xinjiang[J]. Remote Sensing, 2021, 13(6): 1141. DOI: 10.3390/rs13061141
[106] [106] GAUTAM A, GAUTAM R S, SAXENA N. An intelligent wavelet transform-based framework to detect subsurface fires with NOAA-AVHRR images[J]. International Journal of Remote Sensing, 2012, 33(4): 1276-1295. DOI: 10.1080/01431161.2011.604652
[107] [107] CHEN Y, DING K W, SUO Z H,et al. A multisource remote sensing identification method for coal fire zones based on a three-layer ensemble learning model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 12666-12684.
[110] [110] LI Z L, WU H, DUAN S B,et al. Satellite remote sensing of global land surface temperature: Definition, methods, products, and applications[J]. Reviews of Geophysics, 2023, 61(1): e2022RG000777. DOI: 10.1029/2022RG000777
[112] [112] ZHANG L F, ZHANG L P. Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(2): 270-294. DOI: 10.1109/MGRS.2022.3145854
[113] [113] GUPTA N, SYED T H, ATHIPHRO A. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric Synthetic Aperture Radar (DInSAR)[J]. Journal of Earth System Science, 2013, 122(5): 1249-1258. DOI: 10.1007/s12040-013-0355-2
[114] [114] RAJU A, SINHA M, SINGH S,et al. Machine learning approach for detection of land subsidence induced by underground coal fire using multi-sensor satellite data[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2024: 2421553. DOI: 10.1080/17499518.2024.2421553
Get Citation
Copy Citation Text
CHEN Yu, CHENG Huibin, DU Peijun, WEI Jun, LANG Fengkai, DING Kaiwen, SUO Zhihui. A Review of Remote Sensing Detection and Identification Methods for Underground Coal Fire Areas[J]. Remote Sensing Technology and Application, 2025, 40(4): 816
Received: Dec. 9, 2024
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: