Chinese Optics, Volume. 15, Issue 2, 387(2022)

Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide

Qin-yin FENG1, Guo-hua QIU1、*, De-xian YAN1、*, Ji-ning Li2, and Xiang-jun Li1
Author Affiliations
  • 1Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China
  • 2College of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China
  • show less
    References(39)

    [1] BAO D, SHEN X P, CUI T J. Progress of terahertz metamaterials[J]. Acta Physica Sinica, 64, 228701(2015).

    [2] SONG ZH Y, WEI M L, WANG ZH SH. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces[J]. IEEE Photonics Journal, 11, 4600607(2019).

    [3] XU R J, LIU X Y, LIN Y SH. Tunable ultra-narrowband terahertz perfect absorber by using metal-insulator-metal microstructures[J]. Results in Physics, 13, 102176(2019).

    [4] CHEN L, LIAO D G, GUO X G, et al. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review[J]. Frontiers of Information Technology & Electronic Engineering, 20, 591-607(2019).

    [5] LI CH Y, CHANG C C, ZHOU Q L, et al. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs[J]. Optics Express, 25, 25842-25852(2017).

    [6] LEE Y, KIM S J, PARK H, et al. Metamaterials and metasurfaces for sensor applications[J]. Sensors, 17, 1726(2017).

    [7] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [8] SHAN Y, CHEN L, SHI CH, et al. Ultrathin flexible dual band terahertz absorber[J]. Optics Communications, 350, 63-70(2015).

    [9] WEN Q Y, ZHANG H W, XIE Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J]. Applied Physics Letters, 95, 241111(2009).

    [10] BAO ZH Y, WANG J CH, HU ZH D, et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express, 27, 31435-31445(2019).

    [11] FANG X M, JIANG X W, WU H. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 14, 1327-1340(2021).

    [12] ZHANG Y B, LIU W W, LI ZH CH, et al. Ultrathin polarization-insensitive wide-angle broadband near-perfect absorber in the visible regime based on few-layer MoS2 films[J]. Applied Physics Letters, 111, 111109(2017).

    [13] CHEN SH Q, CHENG H, YANG H F, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime[J]. Applied Physics Letters, 99, 253104(2011).

    [14] KONG H, LI G F, JIN Z M, et al. Polarization-independent metamaterial absorber for terahertz frequency[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 33, 649-656(2012).

    [15] RYZHII V, OTSUJI T, RYZHII M, et al. Graphene terahertz uncooled bolometers[J]. Journal of Physics D: Applied Physics, 46, 065102(2013).

    [16] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).

    [17] WANG Y, CUI Z J, ZHU D Y, et al. Multiband terahertz absorber and selective sensing performance[J]. Optics Express, 27, 14133-14143(2019).

    [18] ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 7, 349-364(2014).

    [19] REN ZH H, ZHONG M Z, YANG J H, et al. A polarization-sensitive photodetector based on a AsP/MoS2 heterojunction[J]. Chinese Optics, 14, 135-144(2021).

    [20] YUAN Y H, CHEN X Y, HU F R, et al. Terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure[J]. Chinese Journal of Lasers, 46, 0614016(2019).

    [21] WEIS P, GARCIA-POMAR J L, RAHM M. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene[J]. Optics Express, 22, 8473-8489(2014).

    [22] WU Y, RUAN X ZH, CHEN C H, et al. Graphene/liquid crystal based terahertz phase shifters[J]. Optics Express, 21, 21395-21402(2013).

    [23] LIU H, WANG ZH H, LI L, et al. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber[J]. Scientific Reports, 9, 5751(2019).

    [24] HU F R, WANG H, ZHANG X W, et al. Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 4700207(2019).

    [25] QAZILBASH M M, BREHM M, CHAE B G, et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging[J]. Science, 318, 1750-1753(2007).

    [26] HALLMAN K A, MILLER K J, BAYDIN A, et al. Sub-picosecond response time of a hybrid VO2: silicon waveguide at 1550 nm[J]. Advanced Optical Materials, 9, 2001721(2021).

    [27] YAN D X, MENG M, LI J SH, et al. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave[J]. Optics Express, 28, 29843-29854(2020).

    [28] SONG ZH Y, CHEN A P, ZHANG J H. Terahertz switching between broadband absorption and narrowband absorption[J]. Optics Express, 28, 2037-2044(2020).

    [29] ZHANG M, SONG ZH Y. Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration[J]. Optics Express, 28, 11780-11788(2020).

    [30] HUANG J, LI J N, YANG Y, et al. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces[J]. Optics Express, 28, 17832-17840(2020).

    [31] SONG ZH Y, ZHANG J H. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies[J]. Optics Express, 28, 12487-12497(2020).

    [32] LIU W W, SONG ZH Y. Terahertz absorption modulator with largely tunable bandwidth and intensity[J]. Carbon, 174, 617-624(2021).

    [33] CHU Q H, YANG M SH, CHEN J, et al. Characteristics of tunable Terahertz multi-band absorber[J]. Chinese Journal of Lasers, 46, 1214003(2019).

    [34] ZHANG CH Y, ZHANG H, LING F, et al. Dual-regulated broadband terahertz absorber based on vanadium dioxide and graphene[J]. Applied Optics, 60, 4835-4840(2021).

    [35] ZHOU R H, JIANG T T, PENG ZH, et al. Tunable broadband terahertz absorber based on graphene metamaterials and VO2[J]. Optical Materials, 114, 110915(2021).

    [36] CHEN A P, SONG ZH Y. Tunable isotropic absorber with phase change material VO2[J]. IEEE Transactions on Nanotechnology, 19, 197-200(2020).

    [37] PAN W, SHEN T, MA Y, et al. Dual-band and polarization-independent metamaterial terahertz narrowband absorber[J]. Applied Optics, 60, 2235-2241(2021).

    [38] BIAN J M, WANG M H, SUN H J, et al. Thickness-modulated metal–insulator transition of VO2 film grown on sapphire substrate by MBE[J]. Journal of Materials Science, 51, 6149-6155(2016).

    [39] SUN H J, WANG M H, BIAN J M, et al. Terahertz and metal-insulator transition properties of VO2 film grown on sapphire substrate with MBE[J]. Journal of Inorganic Materials, 32, 437-442(2017).

    Tools

    Get Citation

    Copy Citation Text

    Qin-yin FENG, Guo-hua QIU, De-xian YAN, Ji-ning Li, Xiang-jun Li. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide[J]. Chinese Optics, 2022, 15(2): 387

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Sep. 25, 2021

    Accepted: --

    Published Online: Mar. 28, 2022

    The Author Email: Guo-hua QIU (qghfr@163.com), De-xian YAN (yandexian1991@cjlu.edu.cn)

    DOI:10.37188/CO.2021-0174

    Topics