Chinese Optics, Volume. 13, Issue 1, 62(2020)
Research progress of quantum dot enhanced silicon-based photodetectors
[1] [1] WANG J. Research on superpixel CMOS image sensor technology[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics) 2014. (in Chinese)
[2] [2] MURAMATSU M, AKAHORI H, SHIBAYAMA K, et al.. Greater-than-90% QE in visible spectrum perceptible from UV to near-IR Hamamatsu thinned back-illuminated CCDs[J]. Proceedings of SPIE, 1997, 3019: 2-8.
[3] [3] ALIVISATOS A P. Semiconductor clusters, Nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.
[4] [4] CARUGE J M, HALPERT J E, WOOD V, et al.. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nature Photonics, 2008, 2(4): 247-250.
[5] [5] TAN ZH K, MOGHADDAM R S, LAI M L, et al.. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9): 687-692.
[6] [6] KONSTANTATOS G, HOWARD I, FISCHER A, et al.. Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442(7099): 180-183.
[7] [7] MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al.. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials, 2005, 4(6): 435-446.
[8] [8] SAHU S, BEHERA B, MAITI T K, et al.. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents[J]. Chemical Communications, 2012, 48(70): 8835-8837.
[9] [9] SHEN J H, ZHU Y H, YANG X L, et al.. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices[J]. Chemical Communications, 2012, 48(31): 3686-3699.
[10] [10] LI H T, HE X D, KANG ZH H, et al.. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition, 2010, 49(26): 4430-4434.
[11] [11] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 1993, 115(19): 8706-8715.
[12] [12] PENG Z A, PENG X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. Journal of the American Chemical Society, 2001, 123(1): 183-184.
[13] [13] QU L H, PENG Z A, PENG X G. Alternative routes toward high quality CdSe nanocrystals[J]. Nano Letters, 2001, 1(6): 333-337.
[14] [14] YU W W, PENG X G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers[J]. Angewandte Chemie International Edition, 2002, 41(13): 2368-2371.
[15] [15] YU W W, QU L H, GUO W ZH, et al.. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals[J]. Chemistry of Materials, 2003, 15(14): 2854-2860.
[16] [16] BATTAGLIA D, PENG X G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent[J]. Nano Letters, 2002, 2(9): 1027-1030.
[17] [17] CROS-GAGNEUX A, DELPECH F, NAYRAL C, et al.. Surface chemistry of InP quantum dots: a comprehensive study[J]. Journal of the American Chemical Society, 2010, 132(51): 18147-18157.
[18] [18] HARRIS D K, BAWENDI M G. Improved precursor chemistry for the synthesis of Ⅲ-Ⅴ quantum dots[J]. Journal of the American Chemical Society, 2012, 134(50): 20211-20213.
[19] [19] HINES M A, SCHOLES G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution[J]. Advanced Materials, 2003, 15(21): 1844-1849.
[20] [20] MCDONALD S A, KONSTANTATOS G, ZHANG SH G, et al.. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nature Materials, 2005, 4(2): 138-142.
[21] [21] MOREELS I, LAMBERT K, SMEETS D, et al.. Size-dependent optical properties of colloidal PbS quantum dots[J]. ACS Nano, 2009, 3(10): 3023-3030.
[22] [22] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano letters, 2015, 15(6): 3692-3696.
[23] [23] ZHANG F, ZHONG H ZH, CHEN CH, et al.. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 4533-4542.
[24] [24] SONG J ZH, LI J H, LI X M, et al.. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 2015, 27(44): 7162-7167.
[25] [25] ZHOU Q CH, BAI Z L, LU W G, et al.. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28(41): 9163-9168.
[26] [26] CHEN N J, BAI Z L, WANG Z M, et al.. P-119: low cost perovskite quantum dots film based wide color gamut backlight unit for LCD TVs[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 1657-1659.
[27] [27] ZHANG M J, WANG L X, MENG L H, et al.. Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection[J]. Advanced Optical Materials, 2018, 6(16): 1800077.
[28] [28] TAN Q W, WU X G, ZHANG M J, et al.. Performance analysis of PQDCF-coated silicon image sensor using Monte-Carlo ray-trace simulation[J]. Optics Express, 2019, 27(6): 9079-9087.
[29] [29] LU W G, WU X G, HUANG S, et al.. Strong polarized photoluminescence from stretched perovskite-nanocrystal-embedded polymer composite films[J]. Advanced Optical Materials, 2017, 5(23): 1700594.
[30] [30] WANG L, MENG L H, CHEN L, et al.. Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots[J]. The Journal of Physical Chemistry Letters, 2019, 10(12): 3248-3253.
[31] [31] CARBONE L, NOBILE C, DE GIORGI M, et al.. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach[J]. Nano Letters, 2007, 7(10): 2942-2950.
[32] [32] NIRMAL M, NORRIS D J, KUNO M, et al.. Observation of the "dark exciton" in CdSe quantum dots[J]. Physical Review Letters, 1995, 75(20): 3728-3731.
[33] [33] MENDE S B, HEETDERKS H, FREY H U, et al.. Far ultraviolet imaging from the IMAGE spacecraft. 1. System design[J]. Space Science Reviews, 2000, 91(1-2): 243-270.
[34] [34] ZHOU F, ZHENG G X, YAN F, et al.. Development status and thoughts of space-based UV warning technology[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(6): 39-44. (in Chinese)
[35] [35] STERGAARD J. UV imaging in pharmaceutical analysis[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 140-148.
[36] [36] NIKZAD S, HOENK M E, GREER F, et al.. Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications[J]. Applied Optics, 2012, 51(3): 365-369.
[37] [37] HAMDEN E T, GREER F, HOENK M E, et al.. Ultraviolet antireflection coatings for use in silicon detector design[J]. Applied Optics, 2011, 50(21): 4180-4188.
[38] [38] KARCHER A, BEBEK C J, KOLBE W F, et al.. Measurement of lateral charge diffusion in thick, fully depleted, back-illuminated CCDs[C]. Proceedings of 2003 IEEE Nuclear Science Symposium, IEEE, 2003: 1513-1517.
[39] [39] KNOWLES A, WILLIAMS S, NINKOV Z, et al.. Incorporating quantum dots in a magnesium fluoride matrix to enable deep-UV sensitivity for standard silicon based imaging detectors[J]. Proceedings of SPIE, 2019, 10982: 1098234.
[40] [40] SHENG X, YU C J, MALYARCHUK V, et al.. Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores[J]. Advanced Optical Materials, 2014, 2(4): 314-319.
[41] [41] MORRISSEY P F, MCCANDLISS S R, FELDMAN P D, et al.. Ultraviolet performance of a lumigen-coated CCD[J]. Bulletin of the American Astronomical Society, 1991, 23: 1316.
[42] [42] DESLANDES A, WEDDING A B, CLARKE S R, et al.. Characterization of PVD lumogen films for wavelength conversion applications[J]. Proceedings of SPIE, 2005, 5649: 616-626.
[43] [43] LIU M, ZHANG D W, XIE P, et al.. Investigation in UV-enhanced coatings based on Zn2SiO4: Mn for image sensors[J]. Instrument Technique and Sensor, 2009(9): 12-14. (in Chinese)
[44] [44] FRANKS W A R, KIIK M J, NATHAN A. UV-responsive CCD image sensors with enhanced inorganic phosphor coatings[J]. IEEE Transactions on Electron Devices, 2003, 50(2): 352-358.
[45] [45] ROBINSON R, NINKOV Z, CORMIER D, et al.. First report on quantum dot coated CMOS CID arrays for the UV and VUV[J]. Proceedings of SPIE, 2013, 8859: 88590K.
[46] [46] JIANG L, SUN H J, XU B L, et al.. The spectrum of quantum dots film for UV CCD[J]. Journal of Spectroscopy, 2013: 803907.
[47] [47] ROGALSKI A. Infrared detectors: an overview[J]. Infrared Physics & Technology, 2002, 43(3-5): 187-210.
[48] [48] ROGALSKI A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136-154.
[49] [49] MANDELLI E, BEILEY Z M, KOLLI N, et al.. Quantum dot-based image sensors for cutting-edge commercial multispectral cameras[J]. Proceedings of SPIE, 2016, 9933: 993304.
[50] [50] BEILEY Z M, CHEUNG R, HANELT E F, et al.. Device design for global shutter operation in a 11-μm pixel image sensor and its application to near infrared sensing[J]. Proceedings of SPIE, 2017, 10098: 100981L.
[51] [51] BEILEY Z M, PATTANTYUS-ABRAHAM A, HANELT E, et al.. Design and characterization of 1.1 micron pixel image sensor with high near infrared quantum efficiency[J]. Proceedings of SPIE, 2017, 10100: 101001B.
[52] [52] KIM H Y, YOON D E, JANG J, et al.. Quantum dot/siloxane composite film exceptionally stable against oxidation under heat and moisture[J]. Journal of the American Chemical Society, 2016, 138(50): 16478-16485.
[53] [53] SUREZ I, GORDILLO H, ABARGUES R, et al.. Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films[J]. Nanotechnology, 2011, 22(43): 435202.
[54] [54] TYO J S, GOLDSTEIN D L, CHENAULT D B, et al.. Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 2006, 45(22): 5453-5469.
[55] [55] VERMA V B, MARSILI F, HARRINGTON S, et al.. A three-dimensional, polarization-insensitive superconducting nanowire avalanche photodetector[J]. Applied Physics Letters, 2012, 101(25): 251114.
[56] [56] CREMER F, DE JONG W, SCHUTTE K. Infrared polarization measurements and modelling applied to surface laid anti-personnel landmines[J]. Optical Engineering, 2002, 41(5): 1021-1032.
[57] [57] GE Y, ZHANG M J, WANG L, et al.. Polarization-sensitive ultraviolet detection from oriented-CdSe@CdS-dot-in-rods-integrated silicon photodetector[J]. Advanced Optical Materials, 2019, 7(18): 1900330.
[58] [58] CHAGANTI K, SALAKHUTDINOV I, AVRUTSKY I, et al.. A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens[J]. Optics Express, 2006, 14(9): 4064-4072.
[59] [59] JANSEN-VAN VUUREN R D, ARMIN A, PANDEY A K, et al.. Organic photodiodes: the future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802.
[60] [60] WOLFFENBUTTEL R F. State-of-the-art in integrated optical microspectrometers[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(1): 197-202.
[61] [61] MCGONIGLE A J S, WILKES T C, PERING T D, et al.. Smartphone spectrometers[J]. Sensors, 2018, 18(1): 223.
[62] [62] BACON C P, MATTLEY Y, DEFRECE R. Miniature spectroscopic instrumentation: applications to biology and chemistry[J]. Review of Scientific Instruments, 2004, 75(1): 1-16.
[63] [63] CHIN C D, LINDER V, SIA S K. Lab-on-a-chip devices for global health: past studies and future opportunities[J]. Lab on a Chip, 2007, 7(1): 41-57.
[64] [64] KONG S H, WIJNGAARDS D D L, WOLFFENBUTTEL R F. Infrared micro-spectrometer based on a diffraction grating[J]. Sensors and Actuators A: Physical, 2001, 92(1-3): 88-95.
[65] [65] GOLDMAN D S, WHITE P L, ANHEIER N C. Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis[J]. Applied Optics, 1990, 29(31): 4583-4589.
[66] [66] BRYAN K M, JIA ZH, PERVEZ N K, et al.. Inexpensive photonic crystal spectrometer for colorimetric sensing applications[J]. Optics Express, 2013, 21(4): 4411-4423.
[67] [67] WANG SH W, XIA CH SH, CHEN X SH, et al.. Concept of a high-resolution miniature spectrometer using an integrated filter array[J]. Optics Letters, 2007, 32(6): 632-634.
[68] [68] DUEMPELMANN L, GALLINET B, NOVOTNY L. Multispectral imaging with tunable plasmonic filters[J]. ACS Photonics, 2017, 4(2): 236-241.
[69] [69] KUMAR K, DUAN H G, HEGDE R S, et al.. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 2012, 7(9): 557-561.
[70] [70] BAO J, BAWENDI M G. A colloidal quantum dot spectrometer[J]. Nature, 2015, 523(7558): 67-70.
[71] [71] KHAN S A, BOWDEN A K E. Colloidal quantum dots for cost-effective, miniaturized, and simple spectrometers[J]. Clinical Chemistry, 2016, 62(4): 548-550.
Get Citation
Copy Citation Text
ZHU Xiao-xiu, GE Yong, LI Jian-jun, ZHAO Yue-jin, ZOU Bing-suo, ZHONG Hai-zheng. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 2020, 13(1): 62
Category:
Received: Jun. 13, 2019
Accepted: --
Published Online: Mar. 9, 2020
The Author Email: ZHU Xiao-xiu (2120161207@bit.edu.cn)