Journal of Quantum Optics, Volume. 30, Issue 1, 10601(2024)
Studying on Collision Characteristics of Ultracold 85Rb133Cs Molecules in the Rotational States
[1] [1] AYMAR M, DULIEU O. Calculation of accurate permanent dipole moments of the lowest 1,3 Σ+ states of heteronuclear alkali dimers using extended basis sets[J]. J Chem Phys, 2005, 122(20):204302. DOI: 10.1063/1.1903944.
[2] [2] ZELEVINSKY T, KOTOCHIGOVA S, YE J. Precision test of mass-ratio variations with lattice-confined ultracold molecules[J]. Phys Rev Lett, 2008, 100(4):043201. DOI: 10.1103/PhysRevLett.100.043201.
[3] [3] SCHILLER S. Hydrogenlike highly charged ions for tests of the time independence of fundamental constants[J]. Phys Rev Lett, 2007, 98(18):180801. DOI: 10.1103/PhysRevLett.98.180801.
[4] [4] DEMILLE D, CAHN S B, MURPHREE D, et al. Using molecules to measure nuclear spin-dependent parity violation[J].Phys Rev Lett, 2008, 100(2):023003. DOI: 10.1103/PhysRevLett.100.023003.
[5] [5] GILIJAMSE J J, HOEKSTRA S, VAN DE MEERAKKER S Y T, et al. Near-threshold inelastic collisions using molecular beams with a tunable velocity[J]. Science, 2006, 313:1617-20. DOI: 10.1126/science.1131867.
[6] [6] OSPELKAUS S, NI K K, WANG D, et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules[J]. Science, 2010, 327:853. DOI: 10.1126/science.1184121.
[7] [7] BLACKMORE J A, CALDWELL L, GREGORY P D, et al. Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs[J]. Quantum Sci Technol, 2019, 4(1):014010. DOI: 10.1088/2058-9565/aaee35.
[8] [8] DEMILLE D. Quantum computation with trapped polar molecules[J]. Phys Rev Lett, 2002, 88(6):067901. DOI: 10.1103/PhysRevLett.88.067901.
[9] [9] HU M G, LIU Y, GRIMES D D, et al. Direct observation of bimolecular reactions of ultracold KRb molecules[J]. Science, 2019, 366:1111-1115. DOI: 10.1126/science.aay9531.
[10] [10] ZUCHOWSKI P S, HUTSON J M. Reactions of ultracold alkali-metal dimers[J]. Phys Rev A, 2010, 81(6):060703. DOI: 10.1103/PhysRevA.81.060703.
[11] [11] TAKEKOSHI T, REICHSOLLNER L, SCHINDEWOLF A, et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state[J]. Phys Rev Lett, 2014, 113(20):205301. DOI: 10.1103/PhysRevLett.113.205301.
[12] [12] GUO M Y, YE X, HE J Y, et al. Dipolar collisions of ultracold ground-state bosonic molecules[J]. Phys Rev X, 2018, 8(4): 041044. DOI: 10.1103/PhysRevX.8.041044.
[13] [13] GUO M Y, ZHU B, LU B, et al. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules[J]. Phys Rev Lett, 2016, 116(20):205303. DOI: 10.1103/PhysRevLett.116.205303.
[14] [14] VOGES K K, GERSEMA P , ZUM ALTEN BORGLOH M M, et al. Ultracold gas of bosonic 23 Na 39 K ground-state molecules[J]. Phys Rev Lett, 2020, 125(8):083401. DOI: 10.1103/PhysRevLett.125.083401.
[15] [15] LIU L, ZHANG D C, YANG H, et al. Observation of interference between resonant and detuned stirap in the adiabatic creation of 23Na40K molecules[J]. Phys Rev Lett, 2019, 122(25):253201. DOI: 10.1103/PhysRevLett.122.253201.
[16] [16] MAYLE M, QUéMéNER G, RUZIC B P, et al. Scattering of ultra cold molecules in the highly resonant regime[J]. Phys Rev A, 2013, 87(1):012709. DOI: 10.1103/PhysRevA.87.012709.
[17] [17] MAYLE M, RUZIC B P, BOHN J L. Statistical aspects of ultracold resonant scattering[J]. Phys Rev A, 2012, 85(6):062712. DOI: 10.1103/PhysRevA.85.06271.
[18] [18] YE X, GUO M Y, GONZáLEZ-MARTíNEZ M L, et al. Collisions of ultracold 23 Na 87 Rb molecules with controlled chemical reactivities[J]. Sci Adv, 2018, 4(1):eaaq0083. DOI: 10.1126/sciadv.aaq0083.
[19] [19] GREGORY P D, FRYE M D, BLACKMORE J A, et al. Sticky collisions of ultracold RbCs molecules[J]. Nat Commun, 2019, 10(1):3104. DOI:10.1038/s41467-019-11033-y.
[20] [20] YANG H, ZHANG D C, LIU L, et al. Observation of magnetically tunable Feshbach resonances in ultracold 23 Na 40 K+ 40 K collisions[J]. Science, 2019, 363:261-264. DOI: 10.1126/science.aau5322.
[21] [21] CHRISTIANEN A, ZWIERLEIN M W, GROENENBOOM G C, et al. Photoinduced two-body loss of ultracold molecules[J]. Phys Rev Lett, 2019, 123(12):123402. DOI: 10.1103/PhysRevLett.123.123402.
[22] [22] GREGORY P D, BLACKMORE J A, BROMLEY S L, et al. Loss of ultracold 85 Rb 133 Cs molecules via optical excitation of long-lived two-body collision complexes[J]. Phys Rev Lett, 2020, 124(16):163402. DOI: 10.1103/PhysRevLett.124.163402.
[23] [23] LIU Y, HU M G, NICHOLS M A, et al. Photo-excitation of long-lived transient intermediates in ultracold reactions[J]. Nat Phys, 2020, 16:1132-1136. DOI: 10.1038/s41567-020-0968-8.
[24] [24] GERSEMA P, VOGES K K, ZUM ALTEN BORGLOH M M. Probing Photoinduced Two-Body Loss of Ultracold Nonreactive Bosonic 23 Na 87 Rb and 23 Na 39 K Molecules[J]. Phys Rev Lett, 2021, 127(16):163401. DOI: 10.1103/PhysRevLett.127.163401.
[25] [25] BAUSE R, SCHINDEWOLF A, TAO R, et al. Collisions of ultracold molecules in bright and dark optical dipole traps[J]. Phys Rev Res, 2021, 3(3):033013. DOI: 10.1103/PhysRevResearch.3.033013.
[26] [26] HE J Y, YE X, LIN J Y, et al. Observation of resonant dipolar collisions in ultracold 23 Na 87 Rb rotational mixtures[J]. Phys Rev Res, 2021, 3(1):013016. DOI: 10.1103/PhysRevResearch.3.013016.
[27] [27] CHEUK L W, ANDEREGG L, BAO Y C, et al. Observation of Collisions between Two Ultracold Ground-State CaF Moleculs[J]. Phys Rev Lett, 2020, 125(4):043401. DOI: 10.1103/PhysRevLett.125.043401.
[28] [28] ANDEREGG L, BURCHESKY S, BAO Y C, et al. Observation of microwave shielding of ultracold molecules[J]. Science, 2021, 373:779-782. DOI: 10.1126/science.abg9502.
[29] [29] YAN Z Z, PARK J W, NI Y Q, et al. Resonant Dipolar Collisions of Ultracold Molecules Induced by Microwave Dressing[J]. Phys Rev Lett, 2020, 125(6):063401. DOI: 10.1103/PhysRevLett.125.063401.
[30] [30] SCHINDEWOLF A, BAUSE R, CHEN X Y, et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy[J]. Nature, 2022, 607:677-681. DOI: 10.1038/s41586-022-04900-0.
[31] [31] YANG H, WANG X Y, SU Z, et al. Evidence for the association of triatomic molecules in ultracold 23Na40K + 40K mixtures[J]. Nature, 2022, 602(7896):229-233. DOI: 10.1038/s41586-021-04297-2.
[32] [32] YANG H, CAO J, SU Z, et al. Creation of an ultracold gas of triatomic molecules from an atom-diatomic molecule mixture [J]. Science, 2022, 378(6623):1009-1013. DOI: 10.1126/science.ade6307.
[33] [33] LI J R , TOBIAS W G, MATSUDA K, et al. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas[J]. Nat Phys, 2021, 17:1144-1148. DOI: 10.1038/s41567-021-01329-6.
[34] [34] TOBIAS W G, MATSUDA K, LI J R, et al. Reactions between layer-resolved molecules mediated by dipolar spin exchange[J]. Science, 2022, 375:1299-1303. DOI: 10.1126/science.abn8525.
[35] [35] SON H, PARK J J, LU Y K, et al. Control of reactive collisions by quantum interference[J]. Science, 2022, 375:1006-1010. DOI: 10.1126/science.abl7257.
[36] [36] JACHYMSKI K, GRONOWSKI M, TOMZA M. Collisional losses of ultracold molecules due to intermediate complex formation[J]. Phys Rev A, 2022, 106(4):L041301. DOI: 10.1103/PhysRevA.106.L041301.
[37] [37] KOPPINGER M P, MCCARRON D, JENKIN D, et al. Production of optically trapped 87 RbCs Feshbach molecules[J]. Phys Rev A, 2014, 89(3):033604. DOI: 10.1103/PhysRevA.89.033604.
[38] [38] HUDSON E R, GILFOY N B, KOTOCHIGOVA S, et al. Inelastic collisions of ultracold heteronuclear molecules in an optical trap[J]. Phys Rev Lett, 2008, 100(20):203201. DOI: 10.1103/PhysRevLett.100.203201.
[39] [39] LI Z H, GONG T, JI Z H, et al. A dynamical process of optically trapped singlet ground state 85Rb133Cs molecules produced via short-range photoassociation[J]. Phys Chem Chem Phys, 2018, 20(7):4893-4900. DOI: 10.1039/c7cp07756d.
[40] [40] SHIMASAKI T, BELLOS M, BRUZEWICZ C, et al. Production of rovibronic-ground-state RbCs molecules via twophoton-cascade decay[J]. Phys Rev A, 2015, 91(2):021401(R). DOI: 10.1103/PhysRevA.91.021401.
[41] [41] ZHANG J J, JI Z H, LI Z H, et al. Space-adjustable dark magneto-optical trap for efficient production of heteronuclear molecules[J]. Chin Opt Lett, 2015, 13(11):110201. DOI: 10.3788/COL201513.110201.
[42] [42] ZHAO Y T, YUAN J P, JI Z H, et al. Experimental study of the (4)0- short-range electronic state of the 85 Rb 133 Cs molecule by high resolution photoassociation spectroscopy[J]. J Quant Spectrosc Radiat Transf, 2016, 184:8-13. DOI: 10.1016/j.jqsrt.2016.06.025.
[43] [43] GONG T, JI Z H, LI Z H, et al. Experimental investigations on preparation of ultracold 85Rb133Cs molecules in the ground state based on resonant coupling 33Σ1 + state[J]. Journal of Quantum Optics, 2021, 27(1):62-69. (in Chinese). DOI: 10.3788/JQO20212701.0501.
[44] [44] JI Z H, GONG T, ZHAO Y T, et al. Resonance enhanced two-photon ionization spectrum of ultracold 85 Rb 133 Cs molecules in (2) 1Π 1←X1Σ+ transitions[J]. J Quant Spectrosc Radiat Transf, 2020, 254:107215. DOI: 10.1016/j.jqsrt.2020.107215.
[45] [45] YUAN J P, ZHAO Y T, JI Z H, et al. The determination of potential energy curve and dipole moment of the (5)0+ electronic state of 85 Rb 133 Cs molecule by high resolution photoassociation spectroscopy[J]. J Chem Phys, 2015, 143:224312. DOI: 10.1063/1.4936914.
[46] [46] LI Z H, JI Z H, GONG T, et al. Microwave spectroscopy measurement of ultracold ground state molecules produced via short-range photoassociation[J]. Opt Express, 2018, 26(3):2341-2348. DOI: 10.1364/OE.26.002341.
[47] [47] JI Z H, LI Z H, GONG T, et al. Rotational population measurement of ultracold 85Rb133Cs molecules in the lowest vibrational ground state[J]. Chin Phys Lett, 2017, 34(10):103301. DOI: 10.1088/0256-307X/34/10/103301.
Get Citation
Copy Citation Text
CHEN Yi-yao, MA Wei-xin, JI Zhong-hua, MEI Feng, ZHAO Yan-ting, JIA Suo-tang. Studying on Collision Characteristics of Ultracold 85Rb133Cs Molecules in the Rotational States[J]. Journal of Quantum Optics, 2024, 30(1): 10601
Category:
Received: Nov. 7, 2022
Accepted: --
Published Online: Aug. 23, 2024
The Author Email: JI Zhong-hua (jzh@sxu.edu.cn)