Chinese Journal of Lasers, Volume. 51, Issue 8, 0814001(2024)
Super‐Resolution Reconstruction of Terahertz Image Based on Linear Array Scanning Imaging
[1] Chen C, Wu F L, Zhou H M et al. Research progress in the application of terahertz spectroscopy and imaging technology in stomatology[J]. Journal of Sichuan University. Medical Science Edition, 54, 203-207(2023).
[2] Chen Z, Ma X Y, Zhang B et al. A survey on terahertz communications[J]. China Communications, 16, 1-35(2019).
[3] Zeng Z W, Jin S Z, Li H G et al. Terahertz spectral features detection and accuracy identification of explosives in high humidity environment[J]. Optics and Precision Engineering, 31, 1065-1073(2023).
[4] Xie Q, Yang H R, Li H G et al. Explosive identification based on terahertz time-domain spectral system[J]. Optics and Precision Engineering, 34, 2392-2399(2016).
[5] Liu X Y, Zeng H M, Tian X et al. Transmission simulation and safety analysis of terahertz radiation in skin[J]. Optics and Precision Engineering, 29, 999-1007(2021).
[6] Li Y D, Hu W D, Zhang X et al. Adaptive terahertz image super-resolution with adjustable convolutional neural network[J]. Optics Express, 28, 22200-22217(2020).
[7] Cao B H, Zhang Y M, Fan M B et al. Research progress of terahertz super-resolution imaging[J]. Chinese Optics, 15, 405-417(2022).
[8] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).
[9] Long Z Y, Wang T Y, You C W et al. Terahertz image super-resolution based on a deep convolutional neural network[J]. Applied Optics, 58, 2731-2735(2019).
[10] Wang Y, Qi F, Wang J K. Terahertz image super-resolution based on a complex convolutional neural network[J]. Optics Letters, 46, 3123-3126(2021).
[11] Yang X W, Zhang D H, Wang Z M et al. Super-resolution reconstruction of terahertz images based on a deep-learning network with a residual channel attention mechanism[J]. Applied Optics, 61, 3363-3370(2022).
[12] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 105-114(2017).
[13] Su W T, Hung Y C, Yu P J, Avidan S, Brostow G, Cissé M et al. Seeing through a black box: toward high-quality terahertz imaging via subspace-and-attention guided restoration[M]. Computer vision-ECCV 2022. Lecture notes in computer science, 13667, 453-469(2022).
[14] Shen S. Resolution algorithms based on deep learning research on millimeter wave passive imaging super[D], 31-34(2019).
[16] Aamir M, Rehman Z, Pu Y F et al. Image enhancement in varying light conditions based on wavelet transform[C], 317-322(2019).
[17] Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 20, 209-212(2013).
[18] Li Q H, Fang Y M, Lin W S et al. Gradient-weighted structural similarity for image quality assessments[C], 2165-2168(2015).
[19] Wang H, Lang L Y, Pang Y J et al. Single-image super-resolution reconstruction for continuous-wave terahertz imaging systems[J]. Infrared and Laser Engineering, 52, 20220292(2023).
Get Citation
Copy Citation Text
Yufeng Guo, Shangzhong Jin, Hongguang Li, Ziwei Zeng, LiaoWentao. Super‐Resolution Reconstruction of Terahertz Image Based on Linear Array Scanning Imaging[J]. Chinese Journal of Lasers, 2024, 51(8): 0814001
Category: terahertz technology
Received: Oct. 16, 2023
Accepted: Dec. 11, 2023
Published Online: Apr. 11, 2024
The Author Email: Guo Yufeng (gyf1023@foxmail.com)
CSTR:32183.14.CJL231284