Acta Optica Sinica, Volume. 42, Issue 5, 0533002(2022)

Progressive Multi-Scale Feature Cascade Fusion Color Constancy Algorithm

Zepeng Yang, Kai Xie*, and Tong Li
Author Affiliations
  • School of Information Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
  • show less
    Figures & Tables(13)
    Network structure
    Features extracted from different network structures. (a) Input image; (b) features extracted by algorithm in this pape; (c) features extracted by series convolution network
    Angular error of different convolutional branch number
    Angle error of worst25% and best25%
    Comparison of color constancy algorithms under complex scene illumination. (a) Input images; (b) grey-world algorithm; (c) grey-edge algorithm; (d) FC4 algorithm; (e) C4 algorithm; (f) proposed algorithm
    Samples of data set
    Diagram of network training stage
    Curve of network training loss
    Visualization results of network tests. (a) Input images; (b) images after light source correction obtained by proposed algorithm; (c) features extracted by proposed algorithm; (d) C4 algorithm;(e) FC4 algorithm;(f) grey-world algorithm; (g) white-patch algorithm; (h) grey-edge algorithm; (i) SOG algorithm
    • Table 1. Structures of convolution branch networks

      View table

      Table 1. Structures of convolution branch networks

      BranchConv1Conv2Conv3Conv4Conv5
      13×3×64--------
      25×5×1281×1×645×5×64----
      37×7×645×5×1281×1×645×5×1283×3×64
    • Table 2. Layer numbers of convolution branch network

      View table

      Table 2. Layer numbers of convolution branch network

      BranchConv1Conv2Conv3Conv4Conv5Conv6Conv7
      13×3×64------------
      25×5×1281×1×645×5×64--------
      37×7×645×5×1281×1×645×5×1283×3×64----
      47×7×645×5×1283×3×643×3×1281×1×643×3×1281×1×64
    • Table 3. Test results obtained by using reprocessed ColorChecker dataset

      View table

      Table 3. Test results obtained by using reprocessed ColorChecker dataset

      MethodMeanMedTriBest25%Worst25%95th
      Grey-world[21]10.70010.60010.7003.45012.30017.400
      White-patch[25]9.8008.0008.9003.80013.60022.300
      Shades-of-grey[26]8.3007.5007.8002.90011.80017.000
      1-order grey edge[4]5.0003.7004.1003.90010.10013.300
      2-order grey edge[4]5.4004.5004.8002.6009.80012.800
      Pixel-based gamut[27]6.9005.2005.7001.80011.70018.200
      Edge-based gamut[27]6.9004.6005.2002.10014.60020.600
      Bayesian[6]6.6004.6005.2003.20010.90018.400
      General grey-world[28]7.6006.7007.0003.80012.10016.500
      Using CNNs[7]8.2006.3006.8002.60011.30020.400
      Deep color constancy[19]5.7004.7005.0003.2008.40012.400
      Exemplar[27]2.8902.2702.4200.8205.9706.950
      CCC[29]2.0001.2201.4000.3504.7605.850
      CC-GANs (pix-pix)[13]3.6002.8003.1001.2007.2009.400
      FC4-AlexNet[14]1.7701.1101.2900.3404.2905.440
      FC4-SqueezeNet[14]1.6501.1801.2700.3803.7804.730
      IEN+PSN[18]2.2501.5901.7300.5905.0306.080
      Multi-hypothesis[30]2.1001.3201.5300.3605.100--
      C4[22]1.3500.8800.9900.2803.210--
      Our method1.2100.7670.8430.2442.6553.043
    • Table 4. Test results obtained by using NUS-8 dataset

      View table

      Table 4. Test results obtained by using NUS-8 dataset

      MethodMeanMedTriBest25%Worst25%
      Grey-word[21]4.1403.2003.3900.9009.000
      White-patch[25]10.62010.58010.4901.86019.450
      Shades-of-grey[26]3.4002.5702.7300.7707.410
      1-order grey edge[4]3.2002.2202.4300.7207.360
      2-order grey edge[4]3.2002.2602.4400.7507.270
      Pixel-based gamut[27]7.7006.7106.9002.51014.050
      Edge-based gamut[27]8.4307.0507.3702.41016.080
      Bayesian[6]3.6702.7302.9100.8208.210
      Using CNNs[7]7.6006.9007.4003.00012.400
      Deep color constancy[18]6.2005.0005.4003.9008.600
      CCC[29]2.8001.8001.9000.8506.300
      CC-GANs (pix-pix)[13]3.8003.0003.7001.9008.400
      FC4-AlexNet[14]2.1201.5301.6700.4804.780
      FC4-SqueezeNet[14]2.2301.5701.2700.4705.150
      IEN+PSN[18]2.1001.3501.5100.4505.010
      Multi-hypothesis[30]2.3501.5501.7300.4605.620
      C4[22]1.9601.4201.5300.4804.400
      Our method1.5741.0271.2410.3863.512
    Tools

    Get Citation

    Copy Citation Text

    Zepeng Yang, Kai Xie, Tong Li. Progressive Multi-Scale Feature Cascade Fusion Color Constancy Algorithm[J]. Acta Optica Sinica, 2022, 42(5): 0533002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Vision, Color, and Visual Optics

    Received: Aug. 17, 2021

    Accepted: Sep. 23, 2021

    Published Online: Apr. 17, 2022

    The Author Email: Xie Kai (2596898130@qq.com)

    DOI:10.3788/AOS202242.0533002

    Topics