Acta Photonica Sinica, Volume. 51, Issue 12, 1210001(2022)
Hyperspectral Image Denoising Based on Hybrid Space-spectral Total Variation and Double Domain Low-rank Constraint
[1] BIOUCAS-DIAS J M, PLAZA A, CAMPS-VALLS G et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 1, 6-36(2013).
[2] GOETZ A F H, USTIN S L, SCHAEPMAN M E. Three decades of hyperspectral remote sensing of the earth: a personal view[J]. Remote Sensing of Environment, 113, 5-16(2009).
[3] WILLETT R M, DUARTE M F, DAVENPORT M A et al. Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection[J]. IEEE Signal Processing Magazine, 31, 116-126(2013).
[4] JIA Zhicheng, XUE Yunyan, CHEN Lei et al. Blind separation algorithm for hyperspectral image based on the denoising reduction and the bat optimization[J]. Acta Photonica Sinica, 45, 0511001(2016).
[5] MANJÓN J V, COUPÉ P, MARTÍ-BONMATÍ L et al. Adaptive non-local means denoising of MR images with spatially varying noise levels[J]. Journal of Magnetic Resonance Imaging, 31, 192-203(2010).
[6] DABOV K, FOI A, KATKOVNIK V et al. Image restoration by sparse 3D transform-domain collaborative filtering[J]. Image Processing: Algorithms and Systems VI, 68, 62-73(2008).
[7] LETEXIER D, BOURENNANE S. Noise removal from hyperspectral images by multidimensional filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 46, 2061-2069(2008).
[8] LIU Xuefeng, BOURENNANE S, FOSSATI C. Nonwhite noise reduction in hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 9, 368-372(2011).
[9] HEO A, LEE J H, CHOI E J et al. Noise reduction of hyperspectral images using a joint bilateral filter with fused images[C], 8048, 641-646(2011).
[10] BOLLENBECK F, BACKHAUS A, SEIFFERT U. A multivariate wavelet-PCA denoising-filter for hyperspectral images[C], 1-4(2011).
[11] GOLDFARB D, QIN Z. Robust low-rank tensor recovery: models and algorithms[J]. SIAM Journal on Matrix Analysis and Applications, 35, 225-253(2014).
[12] HARSHMAN R A, LUNDY M E. Parafac: parallel factor analysis[J]. Computational Statistics & Data Analysis, 18, 39-72(1994).
[13] TUCKER L R. Some mathematical notes on three-mode factor analysis[J]. Psychometrika, 31, 279-311(1966).
[14] KILMER M E, BRAMAN K, HAO N et al. Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging[J]. SIAM Journal on Matrix Analysis and Applications, 34, 148-172(2013).
[15] ZHENG Yubang, HUANG Tingzhu, ZHAO Xile et al. Mixed noise removal in hyperspectral image via low-fibered-rank regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 734-749(2019).
[16] FAN Haiyan, CHEN Yunjin, GUO Yulan et al. Hyperspectral image restoration using low-rank tensor recovery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 4589-4604(2017).
[17] WANG Minghua, WANG Qiang, CHANUSSOT J. L0 gradient regularized low-rank tensor model for hyperspectral image denoising[C], 1-6(2019).
[18] WU Xiaoce, ZHOU Bingyin, REN Qingyun et al. Multispectral image denoising using sparse and graph laplacian tucker decomposition[J]. Computational Visual Media, 6, 319-331(2020).
[19] CHANG Yi, YAN Luxin, FANG Houzhang et al. Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping[J]. IEEE Transactions on Image Processing, 24, 1852-1866(2015).
[20] HE Wei, ZHANG Hongyan, ZHANG Lianpei et al. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 178-188(2015).
[21] ZENG Haijin, XIE Xiaozhen, CUI Haojie et al. Hyperspectral image restoration via global L1-2 spatial--spectral total variation regularized local low-rank tensor recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 3309-3325(2020).
[22] YUAN Qiangqiang, ZHANG Liangpei, SHEN Huanfeng. Hyperspectral image denoising employing a spectral--spatial adaptive total variation model[J]. IEEE Transactions on Geoscience and Remote Sensing, 50, 3660-3677(2012).
[23] TAKEYAMA S, ONO S, KUMAZAWA I. A constrained convex optimization approach to hyperspectral image restoration with hybrid spatio-spectral regularization[J]. Remote Sensing, 12, 3541(2020).
[24] WANG Yao, PENG Jiangjun, ZHAO Qian et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1227-1243(2017).
[25] HE Wei, ZHANG Hongyan, SHEN Huanfeng et al. Hyperspectral image denoising using local low-rank matrix recovery and global spatial-spectral total variation[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 11, 713-729(2018).
[26] CHEN Yong, HE Wei, YOKOYA N et al. Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition[J]. IEEE transactions on cybernetics, 50, 3556-3570(2019).
[27] NG M K, CHAN R H, TANGW C. A fast algorithm for deblurring models with Neumann boundary conditions[J]. SIAM Journal on Scientific Computing, 21, 851-866(1999).
[28] GU Shuhang, ZHANG Lei, ZUO Wangmeng et al. Weighted nuclear norm minimization with application to image denoising[C], 2862-2869(2014).
[29] ZHANG Hongyan, HE Wei, ZHANG Liangpei et al. Hyperspectral image restoration using low-rank matrix recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 52, 4729-4743(2013).
[30] XIE Yuan, QU Yanyun, TAO Dacheng et al. Hyperspectral image restoration via iteratively regularized weighted schatten p-norm minimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 4642-4659(2016).
[31] HE Wei, ZHANG Hongyan, ZHANG Liangpei et al. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 178-188(2015).
[32] MAGGIONI M, KATKOVNIK V, EGIAZARIAN K et al. Nonlocal transform-domain fifilter for volumetric data denoising and reconstruction[J]. IEEE Transactions on Image Processing, 22, 119-133(2012).
[33] PENG Yi, MENG Deyu, XU Zongben et al. Decomposable nonlocal tensor dictionary learning for multispectral image denoising[C], 2949-2956(2014).
[34] CAI Jianfeng, CANDES E, SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 20, 1956-1982(2010).
[35] LIN Zhouchen, CHEN Minming, MA Yi. The augmented lagrange multiplier method for exact recovery of corrupted lowrank matrices[J]. arXiv preprint(2010).
[36] KOLDA T G, BADER B W. Tensor decompositions and applications[J]. Siam Review, 51, 455-500(2009).
[37] YUAN Yuli, LV Junrui, LUO Xuegang. Hyperspectral images destriping approach with weighted block sparsity regularization and non-convex low-rank penalty[J]. Journal of Applied Optics, 42, 283(2021).
[38] LIU Sheng, ZENG Haijin, KONG Wenfeng et al. Hyperspectral images restoration based on frequency-weighted tensor nuclear norm[J]. Journal of Image and Graphics, 26, 1910-1925(2021).
[39] WANG Zhongmei, YANG Xiaomei, GU Xingfa. Hyperspectral images denoising based on tensor group sparse representation[J]. Acta Geodaetica et Cartographica Sinica, 46, 614-622(2017).
[40] ZENG Haijin, JIANG Jiawei, ZHAO Jiajia et al. L1-2 Spectral-spatial total variation regularized hyperspectral image denoising[J]. Acta Photonica Sinica, 48, 1010002(2019).
Get Citation
Copy Citation Text
Pengdan ZHANG, Jifeng NING. Hyperspectral Image Denoising Based on Hybrid Space-spectral Total Variation and Double Domain Low-rank Constraint[J]. Acta Photonica Sinica, 2022, 51(12): 1210001
Category:
Received: Mar. 11, 2022
Accepted: Jun. 7, 2022
Published Online: Feb. 6, 2023
The Author Email: Jifeng NING (njf@nwafu.edu.cn)