Infrared and Laser Engineering, Volume. 47, Issue 3, 306001(2018)
Impact and correction of phase error in ladar signal on synthetic aperture imaging
[1] [1] Li Daojing, Zhang Qingjuan, Liu Bo. Key technology and implementation scheme analysis of air-borne synthetic aperture lidar[J]. Journal of Radars, 2013, 2(2): 143-151. (in Chinese)
[2] [2] Wu Jin. On the development of synthetic aperture ladar imaging[J]. Journal of Radars, 2012, 1(4): 353-360. (in Chinese)
[3] [3] Guo Liang, Xing Mengdao, Zhang Long. Research on indoor experimentation of range SAL imaging system[J]. Science China E-Technological Sciences, 2009, 39(10): 1678-1684. (in Chinese)
[4] [4] Pu Tao, Wen Chuanhua. Principle and Adaption of Microwave Photonics[M]. Beijing: Publishing House of Electronics Industry, 2015. (in Chinese)
[6] [6] Du Jianbo, Li Daojing, Ma Meng. Performance analysis and image processing of phase-modulated signal on airborne synthetic aperture lidar[J]. Journal of Radars, 2014, 3(1): 111-118. (in Chinese)
[7] [7] Yan Deke, Zhong Zhen, Sun Chuandong. Mathematical model of the laser frequency shift modulated by small signal low frequency current[J]. Infrared and Laser Engineering, 2011, 40(8): 1465-1468. (in Chinese)
[8] [8] Su Hang. Research about phase noise test technology of continuous wave[D]. Xi′an: Xidian University, 2011. (in Chinese)
[10] [10] Lu Yuanfu, Xie Shiyong, Li Yan, et al. High power narrow linewidth microsecond pulse 1 064 nm ring laser[J]. Optics and Precision Engineering, 2016, 24(10): 35-40. (in Chinese)
[11] [11] Li Daojing, Pan Zhouhao, Qiao Ming. Airborne Millimeter Wave InSAR Technology Based on Three Baseline Antenna[M]. Beijing: Publishing House of Science, 2015: 56-57. (in Chinese)
[12] [12] Liang Yi. Signal processing of LFMCW SAR[D]. Xi′an: Xidian University, 2009. (in Chinese)
[13] [13] Yu Wen, Zhao Siwei, Song Xiaoquan. A FS imaging method for chirp signal correcting in SAL[J]. Laser and Optoelectronics Progress, 2013, 50(7): 072801. (in Chinese)
[14] [14] Hu Xuan, Li Daojing, Zhou Jianwei. Image processing of SAL based on low sampling rate digital dechirp[J]. Journal of University of Chinese Academy of Sciences, 2016, 33(5):664-668. (in Chinese)
[15] [15] Pan Zhouhao, Liu Bo, Li Daojing. System error correcting and signal analysis of micro-wave InSAR with three baseline antennas[J]. Journal of Electronics and Information Technology, 2011, 33(10): 2464-2470. (in Chinese)
[16] [16] Krause B W, Buck J, Ryan C, et al. Synthetic aperture lidar flight demonstration[C]//OSA/CLEO/IQEC, 2011.
[17] [17] Li Daojing, Du Jianbo, Ma Meng, et al. The system analysis of spaceborne synthetic aperture ladar [J]. Infrared and Laser Engineering, 2016, 45(11): 269-276. (in Chinese)
[18] [18] Quegan S. Spotlight Synthetic Aperture Radar Signal Processing Algorithms[M]. Cai Yongjie, translated. Nanjing: Nanjing Research Institute of Electronic Technology, 1997: 158-162. (in Chinese)
Get Citation
Copy Citation Text
Hu Xuan, Li Daojing, Tian He, Zhao Xufeng. Impact and correction of phase error in ladar signal on synthetic aperture imaging[J]. Infrared and Laser Engineering, 2018, 47(3): 306001
Category: 激光技术及应用
Received: Oct. 5, 2017
Accepted: Nov. 3, 2017
Published Online: Apr. 26, 2018
The Author Email: Xuan Hu (m18700476546@163.com)