Chinese Optics Letters, Volume. 20, Issue 2, 021407(2022)

Design and fabrication of a compact, high-performance interference-filter-based external-cavity diode laser for use in the China Space Station

Lingqiang Meng1,2, Pengyang Zhao1,2, Fanchao Meng1, Long Chen3、**, Yong Xie2, Yikun Wang1,2, Wei Bian1, Jianjun Jia1,4, Tao Liu3, Shougang Zhang3, and Jianyu Wang1,2、*
Author Affiliations
  • 1School of Physics and Photoelectric Engineering, Taiji Laboratory for Gravitational Wave Universe, Key Laboratory of Gravitational Wave Precision Measurement of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 2Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 3Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China
  • 4School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(20)

    [1] S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. D. Oppong, R. L. Mcnally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, J. Ye. A Fermi-degenerate three-dimensional optical lattice clock. Science, 358, 90(2017).

    [2] S. Origlia, S. Schiller, M. S. Pramod, L. Smith, Y. Singh, W. He, S. Viswam, D. Swierad, J. Hughes, K. Bongs, U. Sterr, Ch Lisdat, S. Vogt, S. Bize, J. Lodewyck, R. Le Targat, D. Holleville, B. Venon, P. Gill, G. Barwood, I. R. Hill, Y. Ovchinnikov, A. Kulosa, W. Ertmer, E. M. Rasel, S. Stuhler, W. Kaenders. Development of a strontium optical lattice clock for the SOC mission on the ISS. Proc. SPIE, 9900, 990003(2016).

    [3] S. Origlia, M. S. Pramod, S. Schiller, Y. Singh, K. Bongs, R. Schwarz, A. Al-Masoudi, S. Dörscher, S. Herbers, S. Häfner, U. Sterr, C. Lisdat. Towards an optical clock for space: compact, high-performance optical lattice clock based on bosonic atoms. Phys. Rev. A, 98, 053443(2018).

    [4] Y. Sun, Y. Yao, Y. Hao, H. Yu, Y. Jiang, L. Ma. Laser stabilizing to ytterbium clock transition with Rabi and Ramsey spectroscopy. Chin. Opt. Lett., 18, 070201(2020).

    [5] X. Chen, Y. Jiang, B. Li, H. Yu, H. Jiang, T. Wang, Y. Yao, L. Ma. Laser frequency instability of 6×10-16 using 10-cm-long cavities on a cubic spacer. Chin. Opt. Lett., 18, 030201(2020).

    [6] K. C. Harvey, C. J. Myatt. External-cavity diode laser using a grazing-incidence diffraction grating. Opt. Lett., 16, 910(1991).

    [7] L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch. A compact grating-stabilized diode laser system for atomic physics. Opt. Commun., 117, 541(1995).

    [8] A. S. Arnold, J. S. Wilson, M. G. Boshier. A simple extended-cavity diode laser. Rev. Sci. Instrum., 69, 1236(1998).

    [9] B. Mroziewicz. External cavity wavelength tunable semiconductor lasers – a review. Opto-Electron. Rev., 16, 347(2008).

    [10] D. J. Thompson, R. E. Scholten. Narrow linewidth tunable external cavity diode laser using wide bandwidth filter. Rev. Sci. Instrum., 83, 023107(2012).

    [11] X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch. Interference-filter-stabilized external-cavity diode lasers. Opt. Commun., 266, 609(2016).

    [12] P. Zorabedian, W. R. Trutna. Interference-filter-tuned, alignment-stabilized, semiconductor external-cavity laser. Opt. Lett., 13, 826(2012).

    [13] Z. Jiang, Q. Zhou, Z. Tao, X. Zhang, S. Zhang, C. Zhu, P. Lin, J. Chen. Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter. Chin. Phys. B, 25, 083201(2016).

    [14] C. Wei, C. Zuo, L. Liang, S. Yan. Compact external cavity diode laser for quantum experiments. Optoelectron. Lett., 16, 433(2020).

    [15] L. Zhang, T. Liu, L. Chen, G. Xu, C. Jiang, J. Liu, S. Zhang. Development of an interference filter-stabilized external-cavity diode laser for space applications. Photonics, 7, 12(2020).

    [16] E. Simon, C. Coatantiec, M. Saccoccio, D. Blonde, J. Loesel, P. Laurent, I. Maksimovic, M. Abgrall. A highly stable frequency stabilized extended cavity diode laser for space. Proc. SPIE, 5249, 203(2004).

    [17] T. Lévèque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomber, A. Pichon, P. Béraud, J. P. Lelay, S. Thomin, Ph. Laurent. PHARAO laser source flight model: design and performances. Rev. Sci. Instrum., 86, 033104(2015).

    [18] D. Świerad, S. Häfner, S. Vogt, B. Venon, D. Holleville, S. Bize, A. Kulosa, S. Bode, Y. Singh, K. Bongs, E. M. Rasel, J. Lodewyck, R. L. Targat, C. Lisdat, U. Sterr. Ultra-stable clock laser system development towards space applications. Sci. Rep., 6, 33973(2016).

    [19] J. Ruan, J. Liu, J. Ma, Z. Du, C. Wu, S. Zhang. Robust external cavity diode laser system with high frequency stability for Cs atomic clock. Chin. Opt. Lett., 8, 300(2010).

    [20] A. Wicht, A. Bawamia, M Krüger, Ch Kürbis, M. Schiemangk, R. Smol, A. Peters, G. Tränkle. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space. Proc. SPIE, 10085, 100850F(2017).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Lingqiang Meng, Pengyang Zhao, Fanchao Meng, Long Chen, Yong Xie, Yikun Wang, Wei Bian, Jianjun Jia, Tao Liu, Shougang Zhang, Jianyu Wang, "Design and fabrication of a compact, high-performance interference-filter-based external-cavity diode laser for use in the China Space Station," Chin. Opt. Lett. 20, 021407 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers, Optical Amplifiers, and Laser Optics

    Received: Oct. 14, 2021

    Accepted: Nov. 10, 2021

    Published Online: Dec. 1, 2021

    The Author Email: Long Chen (chenlong@ntsc.ac.cn), Jianyu Wang (jywang@mail.sitp.ac.cn)

    DOI:10.3788/COL202220.021407

    Topics