Journal of Innovative Optical Health Sciences, Volume. 17, Issue 6, 2450011(2024)
A generalized deep neural network approach for improving resolution of fluorescence microscopy images
[1] J. W. Lichtman, J. A. Conchello. Fluorescence microscopy. Nat. Methods, 2, 910-919(2005).
[2] B. N. Giepmans, S. R. Adams, M. H. Ellisman, R. Y. Tsien. The fluorescent toolbox for assessing protein location and function. Science, 312, 217-224(2006).
[3] M. Mickoleit, B. Schmid, M. Weber, F. O. Fahrbach, S. Hombach, S. Reischauer, J. Huisken. High-resolution reconstruction of the beating zebrafish heart. Nat. Methods, 11, 919-922(2014).
[4] J. Pawley. Handbook of Biological Confocal Microscopy(2006).
[5] B. Huang, W. Wang, M. Bates, X. Zhuang. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813(2008).
[6] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006).
[7] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).
[8] S. W. Hell. Far-field optical nanoscopy. Science, 316, 1153-1158(2007).
[9] D. Wildanger, R. Medda, L. Kastrup, S. W. Hell. A compact STED microscope providing 3D nanoscale resolution. J. Microsc., 236, 35-43(2009).
[10] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).
[11] L. Shao, P. Kner, E. H. Rego, M. G. Gustafsson. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods, 8, 1044-1046(2011).
[12] H. Li, L. Qu, Z. Hua. Deep learning based fluorescence microscopy imaging technologies and applications. Laser Optoelectron. Prog., 58, 1811007(2021).
[13] F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, S. W. Hell. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355, 606-612(2017).
[14] C. Qiao, D. Li, Y. Guo, C. Liu, T. Jiang, Q. Dai, D. Li. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods, 18, 194-202(2021).
[15] M. Li, H. Shan, S. Pryshchep, M. M. Lopez, G. Wang. Deep adversarial network for super stimulated emission depletion imaging. J. Nanophotonics, 14, 016009-016009(2020).
[16] Y. Q. Tang, C. W. Zhou, H. W. Hao, Y. J. Sun. Deep learning facilitated whole live cell fast super-resolution imaging. Chin. Phys. B, 31, 048705(2022).
[17] S. C. Wang. Artificial neural network. Interdisciplinary Computing in Java Programming, 81-100(2003).
[18] F. I. Alam, J. Zhou, A. W. C. Liew, X. Jia, J. Chanussot, Y. Gao. Conditional random field and deep feature learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens., 57, 1612-1628(2018).
[19] Abeywickrama T., Cheema M. A., Taniar D.. K-nearest neighbors on road networks: A journey in experimentation and in-memory implementation.
[20] D. A. Reynolds, T. F. Quatieri, R. B. Dunn. Speaker verification using adapted Gaussian mixture models. Digit. Signal Process, 10, 19-41(2000).
[21] C. Dong, C. C. Loy, K. He, X. Tang, D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaar. Learning a deep convolutional network for image super-resolution. Computer Vision–ECCV 2014: 13th European Conf., 184-199(2014).
[22] C. Tang, Y. Yuan, S. Xia, G. Ma, B. Wang. Visualizing veins from color skin images using convolutional neural networks. J. Innov. Opt. Health Sci., 13, 2050020(2020).
[23] M. Hu, Z. Yuan, D. Yang, J. Zhao, Y. Liang. Deep learning-based inpainting of saturation artifacts in optical coherence tomography images. J. Innov. Opt. Health Sci., 16, 2350026(2023).
[24] M. Zhou, H. Wang, Q. Zhao, Y. Li, Y. Huang, D. Meng, Y. Zheng. Interactive segmentation as gaussion process classification. Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 19488-19497(2023).
[25] C. Belthangady, L. A. Royer. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods, 16, 1215-1225(2019).
[26] C. Ling, C. Zhang, M. Wang, F. Meng, L. Du, X. Yuan. Fast structured illumination microscopy via deep learning. Photonics Res., 8, 1350-1359(2020).
[27] E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, Y. Shechtman. DeepSTORM3D: Dense 3D localization microscopy and PSF design by deep learning. Nat. Methods, 17, 734-740(2020).
[28] L. Hu, S. Hu, W. Gong, K. Si. Image enhancement for fluorescence microscopy based on deep learning with prior knowledge of aberration. Opt. Lett., 46, 2055-2058(2021).
[29] Z. Wang, L. Zhu, H. Zhang, G. Li, C. Yi, Y. Li, Y. Yang, Y. Ding, M. Zhen, S. Gao, S. Gao, T. K. Hsiai, P. Fei. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nat. Methods, 18, 551-556(2021).
[30] B. Huang, J. Li, B. Yao, Z. Yang, E. Y. Lam, J. Zhang, W. Yan, J. Qu. Enhancing image resolution of confocal fluorescence microscopy with deep learning. PhotoniX, 4, 1-22(2023).
[31] S. J. Pan, Q. Yang. A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 22, 1345-1359(2009).
[32] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. Generative adversarial nets. Advances in Neural Information Processing Systems, 27(2014).
[33] Y. Hao, A. Ji, R. Xing, W. Zhu, B. Jiang, Y. Jian, H. Chen. Capillaries segmentation of NIR-II images and its application in ischemic stroke. Comput. Biol. Med., 147, 105742(2022).
[34] Ronneberger O., Fischer P., Brox T.. U-net: Convolutional networks for biomedical image segmentation.
[35] G. Huang, Z. Liu, L. V. D. Maaten, K. Q. Weinberger. Densely connected convolutional networks. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 4700-4708(2017).
[36] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process, 13, 600-612(2004).
[37] Kingma D. P., Ba J.. Adam: A method for stochastic optimization.
Get Citation
Copy Citation Text
Zichen Jin, Qing He, Yang Liu, Kaige Wang. A generalized deep neural network approach for improving resolution of fluorescence microscopy images[J]. Journal of Innovative Optical Health Sciences, 2024, 17(6): 2450011
Category: Research Articles
Received: Mar. 27, 2024
Accepted: May. 8, 2024
Published Online: Nov. 13, 2024
The Author Email: Kaige Wang (wangkg@nwu.edu.cn)