Laser & Optoelectronics Progress, Volume. 61, Issue 5, 0500001(2024)
From Pulse-Front Distortions of Ultra-Intense Ultrashort Lasers to Group-Velocity Controls of X-Shape Optical Wave-Packets
[1] Perry M D, Pennington D, Stuart B C et al. Petawatt laser pulses[J]. Optics Letters, 24, 160-162(1999).
[2] Aoyama M, Yamakawa K, Akahane Y et al. 0.85-PW, 33-fs Ti∶sapphire laser[J]. Optics Letters, 28, 1594-1596(2003).
[3] Danson C, Hillier D, Hopps N et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 3, e3(2015).
[4] Danson C N, Haefner C, Bromage J et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 7, e54(2019).
[5] Sung J H, Lee H W, Yoo J Y et al. 4.2 PW, 20 fs Ti∶ sapphire laser at 0.1 Hz[J]. Optics Letters, 42, 2058-2061(2017).
[6] Zeng X M, Zhou K N, Zuo Y L et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 42, 2014-2017(2017).
[7] Li W Q, Gan Z B, Yu L H et al. 339 J high-energy Ti∶ sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 43, 5681-5684(2018).
[8] Lureau F, Matras G, Chalus O et al. High-energy hybrid femtosecond laser system demonstrating 2×10 PW capability[J]. High Power Laser Science and Engineering, 8, e43(2020).
[9] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 78, 309-371(2006).
[10] Mourou G. Nobel Lecture: extreme light physics and application[J]. Reviews of Modern Physics, 91, 030501(2019).
[11] Li Z Y, Kawanaka J. Possible method for a single-cycle 100 petawatt laser with wide-angle non-collinear optical parametric chirped pulse amplification[J]. OSA Continuum, 2, 1125-1137(2019).
[12] Li Z Y, Kato Y, Kawanaka J. Simulating an ultra-broadband concept for Exawatt-class lasers[J]. Scientific Reports, 11, 1-16(2021).
[13] Li Z Y, Leng Y X, Li R X. Further development of the short-pulse petawatt laser: trends, technologies, and bottlenecks[J]. Laser & Photonics Reviews, 17, 2100705(2023).
[14] Sauter F. Über das verhalten eines elektrons im homogenen elektrischen feld nach der relativistischen theorie diracs[J]. Zeitschrift Für Physik, 69, 742-764(1931).
[15] Heisenberg W, Euler H. Folgerungen aus der diracschen theorie des positrons[J]. Zeitschrift Für Physik, 98, 714-732(1936).
[16] Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review, 82, 664-679(1951).
[17] Marklund M, Shukla P K. Nonlinear collective effects in photon-photon and photon-plasma interactions[J]. Reviews of Modern Physics, 78, 591-640(2006).
[18] Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 101, 200403(2008).
[19] Di Piazza A, Müller C, Hatsagortsyan K Z et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 84, 1177-1228(2012).
[20] Nakamiya Y, Homma K. Probing vacuum birefringence under a high-intensity laser field with gamma-ray polarimetry at the GeV scale[J]. Physical Review D, 96, 053002(2017).
[21] Shen B F, Bu Z G, Xu J C et al. Exploring vacuum birefringence based on a 100 PW laser and an X-ray free electron laser beam[J]. Plasma Physics and Controlled Fusion, 60, 044002(2018).
[22] Pariente G, Gallet V, Borot A et al. Space-time characterization of ultra-intense femtosecond laser beams[J]. Nature Photonics, 10, 547-553(2016).
[23] Li Z Y, Tsubakimoto K, Yoshida H et al. Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings[J]. Applied Physics Express, 10, 102702(2017).
[24] Li Z Y, Miyanaga N. Simulating ultra-intense femtosecond lasers in the 3-dimensional space-time domain[J]. Optics Express, 26, 8453-8469(2018).
[25] Li Z Y, Liu J, Xu Y et al. Simulating spatiotemporal dynamics of ultra-intense ultrashort lasers through imperfect grating compressors[J]. Optics Express, 30, 41296-41312(2022).
[26] Li Z Y, Kawanaka J. Complex spatiotemporal coupling distortion pre-compensation with double-compressors for an ultra-intense femtosecond laser[J]. Optics Express, 27, 25172-25186(2019).
[27] Jeandet A, Jolly S W, Borot A et al. Survey of spatio-temporal couplings throughout high-power ultrashort lasers[J]. Optics Express, 30, 3262-3288(2022).
[28] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).
[29] Dubietis A, Jonušauskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal[J]. Optics Communications, 88, 437-440(1992).
[30] Treacy E. Optical pulse compression with diffraction gratings[J]. IEEE Journal of Quantum Electronics, 5, 454-458(1969).
[31] Martinez O. 3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 µm region[J]. IEEE Journal of Quantum Electronics, 23, 59-64(1987).
[32] Cheriaux G, Rousseau P, Salin F et al. Aberration-free stretcher design for ultra-short pulse amplification[J]. Optics Letters, 21, 414-416(1996).
[33] Yakovlev I V. Stretchers and compressors for ultra-high power laser systems[J]. Quantum Electronics, 44, 393-414(2014).
[34] Topp M R, Orner G C. Group dispersion effects in picosecond spectroscopy[J]. Optics Communications, 13, 276-281(1975).
[35] Topp M R. Oscilloscope display of picosecond fluctuations in light intensity[J]. Optics Communications, 14, 126-130(1975).
[36] Bor Z, Rácz B. Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation[J]. Optics Communications, 54, 165-170(1985).
[37] Martinez O E. Pulse distortions in tilted pulse schemes for ultrashort pulses[J]. Optics Communications, 59, 229-232(1986).
[38] Bor Z, Racz B, Szabo G et al. Femtosecond pulse front tilt caused by angular dispersion[J]. Optical Engineering, 32, 2501-2504(1993).
[39] Hebling J. Derivation of the pulse front tilt caused by angular dispersion[J]. Optical and Quantum Electronics, 28, 1759-1763(1996).
[40] Nabekawa Y, Midorikawa K. High-order pulse front tilt caused by high-order angular dispersion[J]. Optics Express, 11, 3365-3376(2003).
[41] Akturk S, Gu X, Zeek E et al. Pulse-front tilt caused by spatial and temporal chirp[J]. Optics Express, 12, 4399-4410(2004).
[42] Bor Z. Distortion of femtosecond laser pulses in lenses and lens systems[J]. Journal of Modern Optics, 35, 1907-1918(1988).
[43] Bor Z. Distortion of femtosecond laser pulses in lenses[J]. Optics Letters, 14, 119-121(1989).
[44] Bor Z, Gogolak Z, Szabo G. Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry[J]. Optics Letters, 14, 862-864(1989).
[45] Bor Z, Horváth Z L. Distortion of femtosecond pulses in lenses. Wave optical description[J]. Optics Communications, 94, 249-258(1992).
[46] Akturk S, Gu X, Gabolde P et al. The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams[J]. Optics Express, 13, 8642-8661(2005).
[47] Akturk S, Gu X, Bowlan P et al. Spatio-temporal couplings in ultrashort laser pulses[J]. Journal of Optics, 12, 093001(2010).
[48] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory[J]. Journal of the Optical Society of America A, 4, 651-654(1987).
[49] Durnin J, Miceli J, Jr, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 58, 1499-1501(1987).
[50] Gori F, Guattari G, Padovani C. Bessel-Gauss beams[J]. Optics Communications, 64, 491-495(1987).
[51] McGloin D, Dholakia K. Bessel beams: diffraction in a new light[J]. Contemporary Physics, 46, 15-28(2005).
[52] Lu J Y, Greenleaf J F. Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 39, 19-31(1992).
[53] Lu J Y, Greenleaf J F. Experimental verification of nondiffracting X waves[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 39, 441-446(1992).
[54] Saari P, Reivelt K. Evidence of X-shaped propagation-invariant localized light waves[J]. Physical Review Letters, 79, 4135-4138(1997).
[55] Fagerholm J, Friberg A T, Huttunen J et al. Angular-spectrum representation of nondiffracting[J]. Physical Review E, 54, 4347-4352(1996).
[56] Grunwald R, Kebbel V, Griebner U et al. Generation and characterization of spatially and temporally localized few-cycle optical wave packets[J]. Physical Review A, 67, 063820(2003).
[57] Sõnajalg H, Rätsep M, Saari P. Demonstration of the Bessel-X pulse propagating with strong lateral and longitudinal localization in a dispersive medium[J]. Optics Letters, 22, 310-312(1997).
[58] Alexeev I, Kim K Y, Milchberg H M. Measurement of the superluminal group velocity of an ultrashort Bessel beam pulse[J]. Physical Review Letters, 88, 073901(2002).
[59] Li Z Y, Kawanaka J. Velocity and acceleration freely tunable straight-line propagation light bullet[J]. Scientific Reports, 10, 1-9(2020).
[60] Li Z Y, Kawanaka J. Optical wave-packet with nearly-programmable group velocities[J]. Communications Physics, 3, 211(2020).
[61] Li Z Y, Kawanaka J. Efficient method for determining pulse-front distortion in an ultra-intense laser[J]. Journal of the Optical Society of America B, 37, 2595-2603(2020).
[62] Fiorini C, Sauteret C, Rouyer C et al. Temporal aberrations due to misalignments of a stretcher-compressor system and compensation[J]. IEEE Journal of Quantum Electronics, 30, 1662-1670(1994).
[63] Pretzler G, Kasper A, Witte K J. Angular chirp and tilted light pulses in CPA lasers[J]. Applied Physics B, 70, 1-9(2000).
[64] Osvay K, Kovacs A P, Heiner Z et al. Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 213-220(2004).
[65] Bahk S W, Bromage J, Zuegel J D. Offner radial group delay compensator for ultra-broadband laser beam transport[J]. Optics Letters, 39, 1081-1084(2014).
[66] Sun B S, Salter P S, Booth M J. Pulse front adaptive optics: a new method for control of ultrashort laser pulses[J]. Optics Express, 23, 19348-19357(2015).
[67] Saari P, Reivelt K. Generation and classification of localized waves by Lorentz transformations in Fourier space[J]. Physical Review E, 69, 036612(2004).
[68] Valtna H, Reivelt K, Saari P. Methods for generating wideband localized waves of superluminal group velocity[J]. Optics Communications, 278, 1-7(2007).
[69] Kondakci H E, Abouraddy A F. Diffraction-free pulsed optical beams via space-time correlations[J]. Optics Express, 24, 28659-28668(2016).
[70] Kondakci H E, Abouraddy A F. Diffraction-free space-time light sheets[J]. Nature Photonics, 11, 733-740(2017).
[71] Yessenov M, Bhaduri B, Kondakci H E et al. Classification of propagation-invariant space-time wave packets in free space: theory and experiments[J]. Physical Review A, 99, 023856(2019).
[72] Kondakci H E, Abouraddy A F. Optical space-time wave packets having arbitrary group velocities in free space[J]. Nature Communications, 10, 1-8(2019).
[73] Hall L A, Yessenov M, Abouraddy A F. Arbitrarily accelerating space-time wave packets[J]. Optics Letters, 47, 694-697(2022).
[74] Bhaduri B, Yessenov M, Abouraddy A F. Anomalous refraction of optical spacetime wave packets[J]. Nature Photonics, 14, 416-421(2020).
[75] Li Z Y, Leng Y X, Li R X. Strong double space-time wave packets using optical parametric amplification[J]. Communications Physics, 5, 1-8(2022).
[76] Li Z Y, Liu Y Q, Leng Y X et al. Investigating group-velocity-tunable propagation-invariant optical wave-packets[J]. Scientific Reports, 12, 1-11(2022).
[77] Vincenti H, Quéré F. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses[J]. Physical Review Letters, 108, 113904(2012).
[78] Wheeler J, Borot A, Monchocé S et al. Attosecond lighthouses from plasma mirrors[J]. Nature Photonics, 6, 829-833(2012).
[79] Caizergues C, Smartsev S, Malka V et al. Phase-locked laser-Wakefield electron acceleration[J]. Nature Photonics, 14, 475-479(2020).
[80] Palastro J P, Shaw J L, Franke P et al. Dephasingless laser Wakefield acceleration[J]. Physical Review Letters, 124, 134802(2020).
[81] Zhang Z L, Zhang J Y, Chen Y P et al. Bessel terahertz pulses from superluminal laser plasma filaments[J]. Ultrafast Science, 2022, 9870325(2022).
[82] Miao B, Shrock J E, Feder L et al. Multi-GeV electron bunches from an all-optical laser Wakefield accelerator[J]. Physical Review X, 12, 031038(2022).
[83] Sainte-Marie A, Gobert O, Quéré F. Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings[J]. Optica, 4, 1298-1304(2017).
[84] Jolly S W, Gobert O, Jeandet A et al. Controlling the velocity of a femtosecond laser pulse using refractive lenses[J]. Optics Express, 28, 4888-4897(2020).
[85] Froula D H, Turnbull D, Davies A S et al. Spatiotemporal control of laser intensity[J]. Nature Photonics, 12, 262-265(2018).
[86] Li Z Y, Gu Y J, Kawanaka J. Reciprocating propagation of laser pulse intensity in free space[J]. Communications Physics, 4, 1-9(2021).
[87] Simpson T T, Ramsey D, Franke P et al. Nonlinear spatiotemporal control of laser intensity[J]. Optics Express, 28, 38516-38526(2020).
[88] Simpson T T, Ramsey D, Franke P et al. Spatiotemporal control of laser intensity through cross-phase modulation[J]. Optics Express, 30, 9878-9891(2022).
[89] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 441, 47-189(2007).
[90] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 1, 1-57(2009).
[91] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 1-29(2019).
[92] Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nature Photonics, 15, 253-262(2021).
Get Citation
Copy Citation Text
Zhaoyang Li, Yuxin Leng, Ruxin Li. From Pulse-Front Distortions of Ultra-Intense Ultrashort Lasers to Group-Velocity Controls of X-Shape Optical Wave-Packets[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0500001
Category: Reviews
Received: Feb. 13, 2023
Accepted: Mar. 30, 2023
Published Online: Mar. 13, 2024
The Author Email: Zhaoyang Li (lizy@zjlab.ac.cn)
CSTR:32186.14.LOP222977