Infrared and Laser Engineering, Volume. 51, Issue 11, 20220550(2022)

Advances of large field-of-view two-photon microscopy system (invited)

Jing Yao1,2,3,4, Zhipeng Yu1,2,4, Yufeng Gao3, Shiwei Ye3, Wei Zheng3、*, and Puxiang Lai1,2,4
Author Affiliations
  • 1Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong SAR, China
  • 2The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518055, China
  • 3Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
  • 4Photonics Research Institute, the Hong Kong Polytechnic University, Hong Kong SAR, China
  • show less
    References(51)

    [1] Lai P, Nie L, Wang L. Special issue “Photoacoustic imaging: microscopy, tomography, and their recent applications in biomedicine” in visual computation for industry, biomedicine, and art[J]. Visual Computing for Industry, Biomedicine, and Art, 4, 16(2021).

    [2] Konig K. Multiphoton microscopy in life sciences[J]. J Microsc, 200, 83-104(2000).

    [3] Tehrani K F, Latchoumane C V, Southern W M, et al. Five-dimensional two-photon volumetric microscopy of in-vivo dynamic activities using liquid lens remote focusing[J]. Biomed Opt Express, 10, 3591-3604(2019).

    [4] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nat Methods, 2, 932-940(2005).

    [5] Prevedel R, Verhoef A J, Pernia-Andrade A J, et al. Fast volumetric calcium imaging across multiple cortical layers using sculpted light[J]. Nat Methods, 13, 1021-1028(2016).

    [6] Chamberland S, Yang H H, Pan M M, et al. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators[J]. eLife, 6, e25690(2017).

    [7] Wang Xiao, Tu Shijie, Liu Xin, et al. Advance and prospect for three-dimensional super-resolution microscopy[J]. Laser & Optoelectronics Progress, 58, 2200001(2021).

    [8] Hu Chunguang, Zha Ridong, Ling Qiuyu, et al. Super-resolution microscopy applications and development in living cell[J]. Infrared and Laser Engineering, 46, 1103002(2017).

    [9] Chen Danni, Li Yahui, Liu Wei, et al. Super-resolution infrared microscopy based on VSFG and donut-beam illumination[J]. Infrared and Laser Engineering, 47, 0804003(2018).

    [10] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [11] Deschout H, Lukes T, Sharipov A, et al. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions[J]. Nature Communications, 7, 13693(2016).

    [12] Vaziri A, Tang J, Shroff H, et al. Multilayer three-dimensional super resolution imaging of thick biological samples[J]. Proceedings of the National Academy of Sciences, 105, 20221-20226(2008).

    [13] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [14] Nehme E, Weiss L E, Michaeli T, et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 5, 458-464(2018).

    [15] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [16] Yu W, Ji Z, Dong D, et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser & Photonics Reviews, 10, 147-152(2016).

    [17] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [18] Rowlett Veronica W, Margolin W. 3D-SIM super-resolution of FtsZ and its membrane tethers in escherichia coli cells[J]. Biophysical Journal, 107, L17-L20(2014).

    [19] Neil M A, Juškaitis R, Booth M J, et al. Adaptive aberration correction in a two‐photon microscope[J]. Journal of microscopy, 200, 105-108(2000).

    [20] Park J H, Kong L, Zhou Y, et al. Large-field-of-view imaging by multi-pupil adaptive optics[J]. Nat Methods, 14, 581-583(2017).

    [21] Yu T, Qi Y, Gong H, et al. Optical clearing for multiscale biological tissues[J]. J Biophotonics, 11, e201700187(2018).

    [22] Zheng Y, Chen J, Shi X, et al. Two-photon focal modulation microscopy for high-resolution imaging in deep tissue[J]. J Biophotonics, 12, e201800247(2019).

    [23] Si K, Gong W, Chen N, et al. Two-photon focal modulation microscopy in turbid media[J]. Applied Physics Letters, 99, 233702(2011).

    [24] Kobat D, Horton N, Xu C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex[J]. Journal of Biomedical Optics, 16, 106014(2011).

    [25] Wang Shaowei, Lei Ming. Near infrared-Ⅱ excited multiphoton fluorescence imaging[J]. Laser & Optoelectronics Progress, 59, 0617002(2022).

    [26] Nguyen Q T, Callamaras N, Hsieh C, et al. Construction of a two-photon microscope for video-rate Ca2+ imaging[J]. Cell Calcium, 30, 383-393(2001).

    [27] Theriault G, De Koninck Y, McCarthy N. Extended depth of field microscopy for rapid volumetric two-photon imaging[J]. Opt Express, 21, 10095-10104(2013).

    [28] Lu R, Sun W, Liang Y, et al. Video-rate volumetric functional imaging of the brain at synaptic resolution[J]. Nat Neurosci, 20, 620-628(2017).

    [29] van den Broek B, Ashcroft B, Oosterkamp T H, et al. Parallel nanometric 3D tracking of intracellular gold nanorods using multifocal two-photon microscopy[J]. Nano Letters, 13, 980-986(2013).

    [30] Bumstead J R, Park J J, Rosen I A, et al. Designing a large field-of-view two-photon microscope using optical invariant analysis[J]. Neurophotonics, 5, 025001(2018).

    [31] Yao J, Gao Y, Yin Y, et al. Exploiting the potential of commercial objectives to extend the field of view of two-photon microscopy by adaptive optics[J]. Opt Lett, 47, 989-992(2022).

    [32] Ji N, Freeman J, Smith S L. Technologies for imaging neural activity in large volumes[J]. Nature Neuroscience, 19, 1154-1164(2016).

    [33] Tsai P S, Mateo C, Field J J, et al. Ultra-large field-of-view two-photon microscopy[J]. Opt Express, 23, 13833-13847(2015).

    [34] Rumyantsev O I, Lecoq J A, Hernandez O, et al. Fundamental bounds on the fidelity of sensory cortical coding[J]. Nature, 580, 100-105(2020).

    [35] Negrean A, Mansvelder H D. Optimal lens design and use in laser-scanning microscopy[J]. Biomed Opt Express, 5, 1588-1609(2014).

    [36] Yu C-H, Stirman J N, Yu Y, et al. Diesel2 p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry[J]. Nature Communications, 12, 6639(2021).

    [37] Clough M, Chen I A, Park S W, et al. Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds[J]. Nature Communications, 12, 6638(2021).

    [38] Fan J, Suo J, Wu J, et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution[J]. Nature Photonics, 13, 809-816(2019).

    [39] Demas J, Manley J, Tejera F, et al. High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy[J]. Nature Methods, 18, 1103-1111(2021).

    [40] Sofroniew N J, Flickinger D, King J, et al. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging[J]. Elife, 5, e14472(2016).

    [41] Stirman J N, Smith I T, Kudenov M W, et al. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain[J]. Nat Biotechnol, 34, 857-862(2016).

    [42] Yang M, Zhou Z, Zhang J, et al. MATRIEX imaging: multiarea two-photon real-time in vivo explorer[J]. Light: Science & Applications, 8, 109(2019).

    [43] Lecoq J, Savall J, Vučinić D, et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging[J]. Nature Neuroscience, 17, 1825-1829(2014).

    [44] Yao Jing, Wu Ting, Ye Shiwei, et al. Off-axis parabolic mirror afocal scanning system extends the imaging area of two-photon microscopy[J]. Acta Laser Biology Sinica, 29, 217-224(2020).

    [45] [45] Chen Shuai, Ren Lin, et al. Invivo acrossscales twophoton microscopy[J]. Chinese Optics. doi: 10.37188CO.20220086

    [46] Gao Y, Liu L, Yin Y, et al. Adaptive optics via pupil ring segmentation improves spherical aberration correction for two-photon imaging of optically cleared tissues[J]. Optics Express, 28, 34935-34947(2020).

    [47] Zhao Y, Yu T, Zhang C, et al. Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution[J]. Light: Science & Applications, 7, 17153(2018).

    [48] Cheng S, Li H, Luo Y, et al. Artificial intelligence-assisted light control and computational imaging through scattering media[J]. Journal of Innovative Optical Health Sciences, 12, 1930006(2019).

    [49] Li H, Woo C M, Zhong T, et al. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm[J]. Photonics Research, 9, 202-212(2021).

    [50] Woo C M, Zhao Q, Zhong T, et al. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping[J]. APL Photonics, 7, 046109(2022).

    [51] Yu Z, Li H, Zhong T, et al. Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields[J]. The Innovation, 3, 100292(2022).

    Tools

    Get Citation

    Copy Citation Text

    Jing Yao, Zhipeng Yu, Yufeng Gao, Shiwei Ye, Wei Zheng, Puxiang Lai. Advances of large field-of-view two-photon microscopy system (invited)[J]. Infrared and Laser Engineering, 2022, 51(11): 20220550

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue-Fluorescence microscopy: techniques and applications

    Received: Apr. 5, 2022

    Accepted: --

    Published Online: Feb. 9, 2023

    The Author Email: Wei Zheng (zhengwei@siat.ac.cn)

    DOI:10.3788/IRLA20220550

    Topics