Acta Optica Sinica, Volume. 42, Issue 21, 2126012(2022)

Rainbow Trapping and Broadband Nonlinearity in Lithium Niobate Transformation Optical Waveguides

Xinmu Zong, Chunyu Huang, Chong Sheng, Shining Zhu, and Hui Liu*
Author Affiliations
  • Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, Jiangsu , China
  • show less
    References(30)

    [1] Lehmann L, Grossard L, Delage L et al. Single photon MIR upconversion detector at room temperature with a PPLN ridge waveguide[J]. Optics Express, 27, 19233-19241(2019).

    [2] Luo R, He Y, Liang H X et al. Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation[J]. Laser & Photonics Reviews, 13, 1800288(2019).

    [3] Wang C, Zhang M, Chen X et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).

    [4] Javid U A, Ling J W, Staffa J et al. Ultrabroadband entangled photons on a nanophotonic chip[J]. Physical Review Letters, 127, 183601(2021).

    [5] Xue G T, Niu Y F, Liu X Y et al. Ultra-bright multiplexed energy-time entangled photon generation from lithium niobate on insulator chip[J]. Physical Review Applied, 15, 064059(2021).

    [6] Yan Z W, Wang Q, Xiao M et al. Probing rotated Weyl physics on nonlinear lithium niobate-on-insulator chips[J]. Physical Review Letters, 127, 013901(2021).

    [7] Gan Q Q, Ding Y J, Bartoli F J. Rainbow trapping and releasing at telecommunication wavelengths[J]. Physical Review Letters, 102, 056801(2009).

    [8] Lin J T, Yao N, Hao Z Z et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 122, 173903(2019).

    [9] Savo R, Morandi A, Müller J S et al. Broadband Mie driven random quasi-phase-matching[J]. Nature Photonics, 14, 740-747(2020).

    [10] Li G Z, Chen Y P, Jiang H W et al. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band[J]. Optics Letters, 42, 939-942(2017).

    [11] Zhu S N, Zhu Y Y, Ming N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 278, 843-846(1997).

    [12] Foster M A, Turner A C, Sharping J E et al. Broad-band optical parametric gain on a silicon photonic chip[J]. Nature, 441, 960-963(2006).

    [13] Lafforgue C, Montesinos-Ballester M, Dinh T T et al. Supercontinuum generation in silicon photonics platforms[J]. Photonics Research, 10, A43-A56(2022).

    [14] Tsakmakidis K L, Boardman A D, Hess O. ‘Trapped rainbow’ storage of light in metamaterials[J]. Nature, 450, 397-401(2007).

    [15] Lu C C, Wang C Y, Xiao M et al. Topological rainbow concentrator based on synthetic dimension[J]. Physical Review Letters, 126, 113902(2021).

    [16] Lu C C, Sun Y Z, Wang C Y et al. On-chip nanophotonic topological rainbow[J]. Nature Communications, 13, 2586(2022).

    [17] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 312, 1780-1782(2006).

    [18] Leonhardt U. Optical conformal mapping[J]. Science, 312, 1777-1780(2006).

    [19] Leonhardt U, Tyc T. Broadband invisibility by non-euclidean cloaking[J]. Science, 323, 110-112(2009).

    [20] Pendry J B, Luo Y, Zhao R K. Transforming the optical landscape[J]. Science, 348, 521-524(2015).

    [21] Pendry J B, Fernández-Domínguez A I, Luo Y et al. Capturing photons with transformation optics[J]. Nature Physics, 9, 518-522(2013).

    [22] Sheng C, Bekenstein R, Liu H et al. Wavefront shaping through emulated curved space in waveguide settings[J]. Nature Communications, 7, 10747(2016).

    [23] Luo Y, Lei D Y, Maier S A et al. Broadband light harvesting nanostructures robust to edge bluntness[J]. Physical Review Letters, 108, 023901(2012).

    [24] Sheng C, Huang C Y, Yang R Q et al. Simulating the escape of entangled photons from the event horizon of black holes in nonuniform optical lattices[J]. Physical Review A, 103, 033703(2021).

    [25] Xu T, Fang A N, Jia Z Y et al. Realization of a complementary medium using dielectric photonic crystals[J]. Optics Letters, 42, 4909-4912(2017).

    [26] Liu H, Yan Z W, Xiao M et al. Recent progress in synthetic dimension in topological photonics[J]. Acta Optica Sinica, 41, 0123002(2021).

    [27] Xu C, Shan X L, He W T et al. The influence of paleoclimate and a marine transgression event on organic matter accumulation in lacustrine black shales from the Late Cretaceous, southern Songliao Basin, Northeast China[J]. International Journal of Coal Geology, 246, 103842(2021).

    [28] Zheng Y L, Chen X F. Nonlinear wave mixing in lithium niobate thin film[J]. Advances in Physics: X, 6, 1889402(2021).

    [29] Kim D W, Kim S H, Lee S H et al. Enhanced four-wave-mixing effects by large group indices of one-dimensional silicon photonic crystal waveguides[J]. Optics Express, 21, 30019-30029(2013).

    [30] Yang Y X, Sun L, Zhang Y et al. Efficient and broadband four-wave mixing in a compact silicon subwavelength nanohole waveguide[J]. Advanced Optical Materials, 7, 1900810(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xinmu Zong, Chunyu Huang, Chong Sheng, Shining Zhu, Hui Liu. Rainbow Trapping and Broadband Nonlinearity in Lithium Niobate Transformation Optical Waveguides[J]. Acta Optica Sinica, 2022, 42(21): 2126012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Jun. 20, 2022

    Accepted: Jul. 26, 2022

    Published Online: Nov. 4, 2022

    The Author Email: Liu Hui (liuhui@nju.edu.cn)

    DOI:10.3788/AOS202242.2126012

    Topics