Chinese Journal of Lasers, Volume. 48, Issue 5, 0501002(2021)

Progress on High-Power Low-Noise Continuous-Wave Single-Frequency All-Solid-State Lasers

Kuanshou Zhang1,2、*, Huadong Lu1,2, Yuanji Li1,2, and Jinxia Feng1,2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    References(98)

    [1] Braunstein S L, van Loock P. Quantum information with continuous variables[J]. Reviews of Modern Physics, 77, 513-577(2005).

    [2] Wehner S, Elkouss D. 362(6412): eaam9288[J]. Hanson R. Quantum internet: a vision for the road ahead. Science(2018).

    [3] Flowers J. The route to atomic and quantum standards[J]. Science, 306, 1324-1330(2004).

    [5] Aasil J. Abbott1 B P, Abbott1 R, et al. Advanced LIGO[J]. Classical and Quantum Gravity, 32, 074001(2015).

    [6] Mauranyapin N P, Madsen L S, Taylor M A et al. Evanescent single-molecule biosensing with quantum-limited precision[J]. Nature Photonics, 11, 477-481(2017).

    [12] Su X, Zhao Y, Hao S et al. Experimental preparation of eight-partite cluster state for photonic qumodes[J]. Optics Letters, 37, 5178-5180(2012).

    [16] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).

    [17] Spero R E, Whitcomb S E. The laser interferometer gravitational-wave observatory (LIGO)[J]. Optics and Photonics News, 6, 35-39(1995).

    [18] Winkelmann L. Injection-locked high power oscillator for advanced gravitational wave observatories[M]. Göttingen: Cuvillier Verlag, 22-23(2012).

    [19] Zayhowski J J, Mooradian A. Single-frequency microchip Nd lasers[J]. Optics Letters, 14, 24-26(1989).

    [20] Lang R J, Yariv A. An exact formulation of coupled-mode theory for coupled-cavity lasers[J]. IEEE Journal of Quantum Electronics, 24, 66-72(1988).

    [24] Hao E J, Tan H M, Li T et al. Single-frequency laser at 473nm by use of twisted-mode technique[J]. Optics Communications, 270, 327-331(2007).

    [25] Martin K I, Clarkson W A, Hanna D C. 3 W of single-frequency output at 532nm by intracavity frequency doubling of a diode-bar-pumped Nd: YAG ring laser[J]. Optics Letters, 21, 875-877(1996).

    [26] Winkelmann L, Puncken O, Kluzik R et al. Injection-locked single-frequency laser with an output power of 220 W[J]. Applied Physics B, 102, 529-538(2011).

    [32] Koch P, Ruebel F, Bartschke J et al. 5. 7 W cw single-frequency laser at 671 nm by single-pass second harmonic generation of a 17. 2 W injection-locked 1342 nm Nd∶YVO4 ring laser using periodically poled MgO∶LiNbO3[J]. Applied Optics, 54, 9954-9959(2015).

    [33] Wang L, Ye Q, Gao M W et al. Stable high-power Er: YAG ceramic single-frequency laser at 1645nm[J]. Optics Express, 24, 14967-14973(2016).

    [35] Dai T Y, Guo S X, Duan X M et al. High efficiency single - longitudinal - mode resonantly - pumped Ho∶GdTaO4 laser at 2068nm[J]. Optics Express, 27, 34204-34210(2019).

    [37] Ian M. Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd∶YVO4[D]. Southampton: University of Southampton, 50(2003).

    [38] Ma Y Y, Li Y J, Feng J X et al. Influence of energy-transfer upconversion and excited-state absorption on a high power Nd∶YVO4 laser at 1. 34μm[J]. Optics Express, 26, 12106-12120(2018).

    [40] Li Y J, Feng J X, Li P et al. 400mW low noise continuous-wave single-frequency Er, Yb∶YAl3(BO3)4 laser at 1. 55μm[J]. Optics Express, 21, 6082-6090(2013).

    [41] Liu J, Wang Z, Li H et al. Stable, 12 W, continuous-wave single-frequency Nd: YVO4 green laser polarized and dual-end pumped at 880nm[J]. Optics Express, 19, 6777-6782(2011).

    [43] Yao A Y, Hou W, Kong Y P et al. Double-end-pumped 11-W Nd: YVO4 cw laser at 1342nm[J]. Journal of the Optical Society of America B, 22, 2129(2005).

    [46] Martin K I, Clarkson W A, Hanna D C. Self-suppression of axial mode hopping by intracavity second-harmonic generation[J]. Optics Letters, 22, 375-377(1997).

    [51] Liu Q, Liu J L, Jiao Y C et al. A stable 22-W low-noise continuous-wave single-frequency Nd∶YVO4 laser at 1. 06μm directly pumped by a laser diode[J]. Chinese Physics Letters, 29, 054205(2012).

    [53] Lü B D[M]. Laser optics: beam characterization, propagation and transformation, resonator technology and physics, 392-393(2003).

    [56] Zheng Y H, Zhou H J, Wang Y J et al. Suppressing the preferential σ-polarization oscillation in a high power Nd: YVO4 laser with wedge laser crystal[J]. Chinese Physics B, 22, 084207(2013).

    [59] Yin Q, Lu H, Peng K. Investigation of the thermal lens effect of the TGG crystal in high-power frequency-doubled laser with single frequency operation[J]. Optics Express, 23, 4981-4990(2015).

    [60] Yin Q, Lu H, Su J et al. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal[J]. Optics Letters, 41, 2033-2036(2016).

    [62] Jin P, Lu H, Su J et al. Scheme for improving laser stability via feedback control of intracavity nonlinear loss[J]. Applied Optics, 55, 3478-3482(2016).

    [66] Guo Y R, Xu M Z, Peng W N et al. Realization of a 101 W single-frequency continuous wave all-solid-state 1064nm laser by means of mode self-reproduction[J]. Optics Letters, 43, 6017-6020(2018).

    [67] Feng J X, Wan Z J, Li Y J et al. Generation of 8.3dB continuous variable quantum entanglement at a telecommunication wavelength of 1550nm[J]. Laser Physics Letters, 15, 015209(2018).

    [69] Bachor H A, Ralph T C. A guide to experiments in quantum optics[M]. Weinheim: Wiley, 204-205(2004).

    [72] Guo Y R, Peng W N, Su J et al. Influence of the pump scheme on the output power and the intensity noise of a single-frequency continuous-wave laser[J]. Optics Express, 28, 5866-5874(2020).

    [73] Guo Y, Lu H, Peng W et al. Intensity noise suppression of a high-power single-frequency CW laser by controlling the stimulated emission rate[J]. Optics Letters, 44, 6033-6036(2019).

    [74] Gao Y H, Li Y J, Feng J X et al. Stable continuous-wave single-frequency intracavity frequency-doubled laser with intensity noise suppressed in audio frequency region[J]. Chinese Physics B, 28, 094204(2019).

    [79] Feng J X, Li Y J, Zhang K S et al[J]. Linear polarization output performance of Nd: YAG laser at 946nm considering the energy-transfer upconversion Chinese Physics B, 27, 074211.

    [81] Wang Y T, Liu J L, Liu Q et al. Stable continuous-wave single-frequency Nd: YAG blue laser at 473nm considering the influence of the energy-transfer upconversion[J]. Optics Express, 18, 12044-12051(2010).

    [84] Ma Y Y, Feng J X, Wan Z J et al. Continuous variable quantum entanglement at 1. 34μm[J]. Acta Physica Sinica, 66, 244205(2017).

    [89] Lu H. D, Su J. Xie C D, et al. Experimental investigation about influences of longitudinal-mode structure of pumping source on a Ti: sapphire laser[J]. Optics Express, 19, 1344-1353(2011).

    [91] Wei Y X, Lu H D, Jin P X et al. Self-injection locked CW single-frequency tunable Ti: sapphire laser[J]. Optics Express, 25, 21379-21387(2017).

    [93] Lu H D, Wei J, Wei Y X et al. Generation of high-power single-frequency 397. 5nm laser with long lifetime and perfect beam quality in an external enhancement-cavity with MgO-doped PPSLT[J]. Optics Express, 24, 23726-23734(2016).

    [96] Li F Q, Li H J, Lu H D et al. High-power tunable single-frequency 461nm generation from an intracavity doubled Ti: sapphire laser with PPKTP[J]. Laser Physics, 26, 025802(2016).

    Tools

    Get Citation

    Copy Citation Text

    Kuanshou Zhang, Huadong Lu, Yuanji Li, Jinxia Feng. Progress on High-Power Low-Noise Continuous-Wave Single-Frequency All-Solid-State Lasers[J]. Chinese Journal of Lasers, 2021, 48(5): 0501002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Oct. 27, 2020

    Accepted: Nov. 19, 2020

    Published Online: Mar. 3, 2021

    The Author Email: Zhang Kuanshou (kuanshou@sxu.edu.cn)

    DOI:10.3788/CJL202148.0501002

    Topics