International Journal of Extreme Manufacturing, Volume. 7, Issue 1, 12005(2025)

Manufacture and applications of GaN-based piezotronic and piezo-phototronic devices

Niu Jianan, Wang Jiangwen, Sha Wei, Long Yong, Ma Bei, and Hu Weiguo
References(120)

[1] [1] He W, Li Z J and Chen C L P 2017 A survey of human-centered intelligent robots: issues and challenges IEEE/CAA J. Autom. Sin.4 602–9

[2] [2] Ren F J and Bao Y W 2020 A review on human-computer interaction and intelligent robots Int. J. Inf. Technol. Decis. Mak.19 5–47

[3] [3] Huang R, Li H X, Suomi R, Li C L and Peltoniemi T 2023 Intelligent physical robots in health care: systematic literature review J. Med. Internet Res.25 e39786

[4] [4] Morioka K, Lee J H and Hashimoto H 2004 Human-following mobile robot in a distributed intelligent sensor network IEEE Trans. Ind. Electron.51 229–37

[5] [5] Lee J H and Hashimoto H 2003 Controlling mobile robots in distributed intelligent sensor network IEEE Trans. Ind. Electron.50 890–902

[6] [6] Brucks M S and Levav J 2022 Virtual communication curbs creative idea generation Nature605 108–12

[7] [7] Shi L, Li B C, Kim C, Kellnhofer P and Matusik W 2021 Towards real-time photorealistic 3D holography with deep neural networks Nature591 234–9

[8] [8] O'Doherty J E, Lebedev M A, Ifft P J, Zhuang K Z, Shokur S, Bleuler H and Nicolelis M A L 2011 Active tactile exploration using a brain-machine-brain interface Nature479 228–31

[9] [9] Tritt T M and Subramanian M A 2006 Thermoelectric materials, phenomena, and applications: a bird's eye view MRS Bull.31 188–98

[10] [10] Razeghi M and Rogalski A 1996 Semiconductor ultraviolet detectors J. Appl. Phys.79 7433–73

[11] [11] Li Q et al 2015 Flexible high-temperature dielectric materials from polymer nanocomposites Nature523 576–9

[12] [12] Williams J C and Starke Jr E A 2003 Progress in structural materials for aerospace systems Acta Mater.51 5775–99

[13] [13] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nat. Nanotechnol.7 699–712

[14] [14] Rogers J A, Lagally M G and Nuzzo R G 2011 Synthesis, assembly and applications of semiconductor nanomembranes Nature477 45–53

[15] [15] Wang Z L and Song J H 2006 Piezoelectric nanogenerators based on zinc oxide nanowire arrays Science312 242–6

[16] [16] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 Band parameters for III–V compound semiconductors and their alloys J. Appl. Phys.89 5815–75

[17] [17] Bernardini F, Fiorentini V and Vanderbilt D 1997 Spontaneous polarization and piezoelectric constants of III–V nitrides Phys. Rev. B 56 R10024–27

[18] [18] Zhang Y H, Zubair A, Liu Z H, Xiao M, Perozek J, Ma Y W and Palacios T 2021 GaN FinFETs and trigate devices for power and RF applications: review and perspective Semicond. Sci. Technol.36 054001

[19] [19] He P W, Mallik A, Sankar A and Khaligh A 2019 Design of a 1-MHz high-efficiency high-power-density bidirectional GaN-based CLLC converter for electric vehicles IEEE Trans. Veh. Technol.68 213–23

[20] [20] Shon J W, Ohta J, Ueno K, Kobayashi A and Fujioka H 2014 Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering Sci. Rep.4 5325

[21] [21] Liu J P, Ryou J H, Dupuis R D, Han J, Shen G D and Wang H B 2008 Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes Appl. Phys. Lett.93 021102

[22] [22] Wierer J J Jr, Tsao J Y and Sizov D S 2013 Comparison between blue lasers and light-emitting diodes for future solid-state lighting Laser Photon. Rev.7 963–93

[23] [23] Miyoshi T, Masui S, Okada T, Yanamoto T, Kozaki T, Nagahama S I and Mukai T 2009 510–515 nm InGaN-based green laser diodes on c-plane GaN substrate Appl. Phys. Express2 062201

[24] [24] Peng M Z, Li Z, Liu C H, Zheng Q, Shi X Q, Song M, Zhang Y, Du S Y, Zhai J Y and Wang Z L 2015 High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging ACS Nano9 3143–50

[25] [25] Zhang Y H, Dadgar A and Palacios T 2018 Gallium nitride vertical power devices on foreign substrates: a review and outlook J. Phys. D: Appl. Phys.51 273001

[26] [26] Wang Z L 2007 Nanopiezotronics Adv. Mater.19 889–92

[27] [27] Wang Z L 2010 Piezopotential gated nanowire devices: piezotronics and piezo-phototronics Nano Today5 540–52

[28] [28] Hertrampf J, Alt N S A, Schlcker E, Knetzger M, Meissner E and Niewa R 2016 Ammonothermal synthesis of GaN using Ba(NH2)2 as mineralizer J. Cryst. Growth456 2–4

[29] [29] Kucharski R, Zajac M, Puchalski A, Sochacki T, Bockowski M, Weyher J L, Iwinska M, Serafinczuk J, Kudrawiec R and Siemia˛tkowski Z 2015 Ammonothermal growth of GaN crystals on HVPE-GaN seeds prepared with the use of ammonothermal substrates J. Cryst. Growth427 1–6

[30] [30] Smalc-Koziorowska J, Kamler G, ucznik B and Grzegory I 2009 Structural defects in GaN crystals grown by HVPE on needle-shaped GaN seeds obtained under high N2 pressure J. Cryst. Growth311 1407–10

[31] [31] Domagala J Z et al 2016 Influence of edge-grown HVPE GaN on the structural quality of c-plane oriented HVPE-GaN grown on ammonothermal GaN substrates J. Cryst. Growth456 80–85

[32] [32] Iwinska M et al 2016 HVPE-GaN growth on GaN-based advanced substrates by smart cut™ J. Cryst. Growth456 73–79

[33] [33] Zhang Y X, Chen Z Y, Zhang K T, Feng Z X and Zhao H P 2021 Laser-assisted metal-organic chemical vapor deposition of gallium nitride Phys. Status Solidi15 2100202

[34] [34] Yang W Q, Gan F X, Deng P Z, Xu J, Li S Z and Zhang R 2003 GaN growth on LiGaO2(001) with MOCVD J. Inorg. Mater.18 215–9

[35] [35] Kim H M, Kang T W and Oh J E 2000 Comparison of HVPE GaN films and substrates grown on sapphire and on MOCVD GaN epi-layer Mater. Lett.46 286–90

[36] [36] Wen X N, Wu W Z, Pan C F, Hu Y F, Yang Q and Wang Z L 2015 Development and progress in piezotronics Nano Energy14 276–95

[37] [37] Zhu G Y, Li J P, Li J T, Guo J Y, Dai J, Xu C X and Wang Y J 2018 Single-mode ultraviolet whispering gallery mode lasing from a floating GaN microdisk Opt. Lett.43 647–50

[38] [38] Chittock N J, Shu Y, Elliott S D, Knoops H C M, Kessels W M M and Mackus A J M 2023 Isotropic atomic layer etching of GaN using SF6 plasma and Al(CH3)3J. Appl. Phys.134 075302

[39] [39] Zhuang D and Edgar J H 2005 Wet etching of GaN, AlN, and SiC: a review Mater. Sci. Eng. R 48 1–46

[40] [40] Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W and Sadana D K 2014 Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene Nat. Commun.5 4836

[41] [41] Kwak H M et al 2023 2D-material-assisted GaN growth on GaN template by MOCVD and its exfoliation strategy ACS Appl. Mater. Interfaces15 59025–36

[42] [42] Glavin N R, Chabak K D, Heller E R, Moore E A, Prusnick T A, Maruyama B, Walker D E, Dorsey D L, Paduano Q and Snure M 2017 Flexible gallium nitride for high-performance, strainable radio-frequency devices Adv. Mater.29 1701838

[43] [43] Wang Y, Wu Q Z, Mao S M, Xu R M, Yan B and Xu Y H 2021 Bendable microwave AlGaN/GaN high-electron-mobility transistor with output power density of 2.65 W/mm IEEE Electron Device Lett.42 677–80

[44] [44] Lee H E et al 2018 Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical stimulator Adv. Mater.30 1800649

[45] [45] Johar M A, Kang J H, Hassan M A and Ryu S W 2018 A scalable, flexible and transparent GaN based heterojunction piezoelectric nanogenerator for bending, air-flow and vibration energy harvesting Appl. Energy222 781–9

[46] [46] Liu X S, Zhao L, Miao B, Gu Z Q, Wang J, Peng H X, Li J D, Sun W and Li J D 2020 Wearable multiparameter platform based on AlGaN/GaN high-electron-mobility transistors for real-time monitoring of pH and potassium ions in sweat Electroanalysis32 422–8

[47] [47] Wang H, Ma X H and Hao Y 2017 Electronic devices for human-machine interfaces Adv. Mater. Interfaces4 1600709

[48] [48] Kim H, Kwon Y T, Lim H R, Kim J H, Kim Y S and Yeo W H 2021 Recent advances in wearable sensors and integrated functional devices for virtual and augmented reality applications Adv. Funct. Mater.31 2005692

[49] [49] Yang T H, Kim J R, Jin H, Gil H, Koo J H and Kim H J 2021 Recent advances and opportunities of active materials for haptic technologies in virtual and augmented reality Adv. Funct. Mater.31 2008831

[50] [50] Chang C L, Bang K, Wetzstein G, Lee B and Gao L 2020 Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective Optica7 1563–78

[51] [51] He Z H, Sui X, Jin G F and Cao L C 2019 Progress in virtual reality and augmented reality based on holographic display Appl. Opt.58 A74–A81

[52] [52] Chen C C, Yeh C C, Chen C H, Yu M Y, Liu H L, Wu J J, Chen K H, Chen L C, Peng J Y and Chen Y F 2001 Catalytic growth and characterization of gallium nitride nanowires J. Am. Chem. Soc.123 2791–8

[53] [53] Yeh C Y, Lu Z W, Froyen S and Zunger A 1992 Zinc-blende-wurtzite polytypism in semiconductors Phys. Rev. B 46 10086–97

[54] [54] Langa S, Tiginyanu I M, Carstensen J, Christophersen M and Fll H 2003 Self-organized growth of single crystals of nanopores Appl. Phys. Lett.82 278–80

[55] [55] Kim H M, Kang T W and Chung K S 2003 Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nanorods Adv. Mater.15 567–9

[56] [56] Maruska H P and Tietjen J J 1969 The preparation and properties of vapor-deposited single-crystal-line GaN Appl. Phys. Lett.15 327–9

[57] [57] Reeber R R and Wang K 2000 Lattice parameters and thermal expansion of GaN J. Mater. Res.15 40–44

[58] [58] Berolo O, Woolley J C and Van Vechten J A 1973 Effect of disorder on the conduction-band effective mass, valence-band spin-orbit splitting, and the direct band gap in III–V alloys Phys. Rev. B 8 3794–8

[59] [59] Nipko J C, Loong C K, Balkas C M and Davis R F 1998 Phonon density of states of bulk gallium nitride Appl. Phys. Lett.73 34–36

[60] [60] Sichel E K and Pankove J I 1977 Thermal conductivity of GaN, 25–360 K J. Phys. Chem. Solids38 330

[61] [61] Yonenaga I, Sumino K and Hoshi K 1984 Mechanical strength of silicon crystals as a function of the oxygen concentration J. Appl. Phys.56 2346–50

[62] [62] Mokerov V G, Fedorov Y V and Hook A V 1999 High density 2DEG in III–V semiconductor heterostructures and high-electron-mobility transistors based on them Semiconductors33 970–1

[63] [63] Hall D A 2001 Review nonlinearity in piezoelectric ceramics J. Mater. Sci.36 4575–601

[64] [64] Kalafi M and Asgari A 2003 The behavior of two-dimensional electron gas in GaN/AlxGa1−xN/GaN heterostructures with very thin AlxGa1−xN barriers Physica E 19 321–7

[65] [65] Hsiao T C, Kistler N A and Woo J C S 1994 Modeling the I–V characteristics of fully depleted submicrometer SOI MOSFET's IEEE Electron Device Lett.15 45–47

[66] [66] Du C H, Jing L, Jiang C Y, Liu T, Pu X, Sun J M, Li D B and Hu W G 2018 An effective approach to alleviating the thermal effect in microstripe array-LEDs via the piezo-phototronic effect Mater. Horiz.5 116–22

[67] [67] Wu N T, Xing Z H, Li S J, Luo L, Zeng F Y and Li G Q 2023 GaN-based power high-electron-mobility transistors on Si substrates: from materials to devices Semicond. Sci. Technol.38 063002

[68] [68] Kassakian J G and Jahns T M 2013 Evolving and emerging applications of power electronics in systems IEEE J. Emerg. Sel. Top. Power Electron1 47–58

[69] [69] Wang Y, Huang T D, Jin S S, Wang C, Ma D D, Shen H C, Li C, Li Y H and Wu W 2023 A self-biased GaN LNA with 30 dB gain and 21 dBm P1dB for 5G communications Int. J. Microw. Wirel. Technol.15 547–53

[70] [70] Nakatani K, Yamaguchi Y, Torii T and Tsuru M 2022 A review of GaN MMIC power amplifier technologies for millimeter-wave applications IEICE Trans. Electron.E105 433–40

[71] [71] Sajedin M, Elfergani I, Rodriguez J, Violas M, Asharaa A, Abd-Alhameed R, Fernandez-Barciela M and Abdulkhaleq A M 2021 Multi-resonant class-F power amplifier design for 5G cellular networks Radioengineering30 372–80

[72] [72] Iucolano F and Boles T 2019 GaN-on-Si HEMTs for wireless base stations Mater. Sci. Semicond. Process.98 100–5

[73] [73] Chen Y X, Liu J X, Liu K L, Si J J, Ding Y R, Li L Y, Lv T R, Liu J P and Fu L 2019 GaN in different dimensionalities: properties, synthesis, and applications Mater. Sci. Eng. R 138 60–84

[74] [74] Molnar R J, Gtz W, Romano L T and Johnson N M 1997 Growth of gallium nitride by hydride vapor-phase epitaxy J. Cryst. Growth178 147–56

[75] [75] Ambacher O 1998 Growth and applications of Group III-nitrides J. Phys. D: Appl. Phys.31 2653–710

[76] [76] Hu W G, Ma B, Li D B, Miyagawa R, Miyake H and Hiramatsu K 2010 Effects of the AlN interlayer on the distribution and mobility of two-dimensional electron gas in AlGaN/AlN/GaN heterojunctions Jpn. J. Appl. Phys.49 035701

[77] [77] Wang X F, Yu R M, Jiang C Y, Hu W G, Wu W Z, Ding Y, Peng W B, Li S T and Wang Z L 2016 Piezotronic effect modulated heterojunction electron gas in AlGaN/AlN/GaN heterostructure microwire Adv. Mater.28 7234–42

[78] [78] Thillosen N, Sebald K, Hardtdegen H, Meijers R, Calarco R, Montanari S, Kaluza N, Gutowski J and Lth H 2006 The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements Nano Lett.6 704–8

[79] [79] Armstrong R, Coulon P M, Bozinakis P, Martin R W and Shields P A 2020 Creation of regular arrays of faceted AlN nanostructures via a combined top-down, bottom-up approach J. Cryst. Growth548 125824

[80] [80] Liu X H, Wu Y P, Malhotra Y, Sun Y, Ra Y H, Wang R J, Stevenson M, Coe-Sullivan S and Mi Z T 2020 Submicron full-color LED pixels for microdisplays and micro-LED main displays J. Soc. Inf. Disp.28 410–7

[81] [81] Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G and Wang Z L 2015 Piezotronic effect in polarity-controlled GaN nanowires ACS Nano9 8578–83

[82] [82] Wang J W, Hua Q L, Sha W, Chen J W, Dai X H, Niu J N, Xiao J F and Hu W G 2022 Flexible GaN-based microscale light-emitting diodes with a batch transfer by wet etching Opt. Lett.47 5052–5

[83] [83] Cheng S D, Han S C, Cao Z Y, Xu C C, Fang X S and Wang X Y 2020 Wearable and ultrasensitive strain sensor based on high-quality GaN pn junction microwire arrays Small16 1907461

[84] [84] Lee J W, Ye B U, Wang Z L, Lee J L and Baik J M 2018 Highly-sensitive and highly-correlative flexible motion sensors based on asymmetric piezotronic effect Nano Energy51 185–91

[85] [85] Hua Q L, Sun J L, Liu H T, Cui X, Ji K Y, Guo W B, Pan C F, Hu W G and Wang Z L 2020 Flexible GaN microwire-based piezotronic sensory memory device Nano Energy78 105312

[86] [86] Lee S Y, Park K I, Huh C, Koo M, Yoo H G, Kim S, Ah C S, Sung G Y and Lee K J 2012 Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications Nano Energy1 145–51

[87] [87] Lee H E, Shin J H, Park J H, Hong S K, Park S H, Lee S H, Lee J H, Kang I S and Lee K J 2019 Micro light-emitting diodes for display and flexible biomedical applications Adv. Funct. Mater.29 1808075

[88] [88] Hua Q L, Cui X, Ji K Y, Wang B J and Hu W G 2021 Piezotronics enabled artificial intelligence systems J. Phys. Mater.4 022003

[89] [89] Zhang Y Y, An S, Zheng Y X, Lai J Y, Seo J H, Lee K H and Kim M 2022 Releasable AlGaN/GaN 2D electron gas heterostructure membranes for flexible wide-bandgap electronics Adv. Electron. Mater.8 2100652

[90] [90] Liu T et al 2020 Piezo-phototronic effect in InGaN/GaN semi-floating micro-disk LED arrays Nano Energy67 104218

[91] [91] Zhang S et al 2020 Strain-controlled power devices as inspired by human reflex Nat. Commun.11 326

[92] [92] Zhu J Y, Zhou X Y, Jing L, Hua Q L, Hu W G and Wang Z L 2019 Piezotronic effect modulated flexible AlGaN/GaN high-electron-mobility transistors ACS Nano13 13161–8

[93] [93] Du C H et al 2015 Piezo-phototronic effect controlled dual-channel visible light communication (PVLC) using InGaN/GaN multiquantum well nanopillars Small11 6071–7

[94] [94] Lee Y J, Yang Z P, Chen P G, Hsieh Y A, Yao Y C, Liao M H, Lee M H, Wang M T and Hwang J M 2018 Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors: reply Opt. Express26 A110

[95] [95] Liu T T et al 2018 Flexible integrated diode-transistor logic (DTL) driving circuits based on printed carbon nanotube thin film transistors with low operation voltage Nanoscale10 614–22

[96] [96] Wang J W, Niu J N, Sha W, Dai X H, Huang T C, Hua Q L, Long Y, Xiao J F and Hu W G 2023 Flexible high-resolution micro-LED display device with integrations of transparent, conductive, and highly elastic hydrogel Nano Res.16 11893–9

[97] [97] Cabral P M, Pedro J C and Carvalho N B 2004 Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design IEEE Trans. Microw. Theory Tech.52 2585–92

[98] [98] Shen L, Chakraborty A, McCarthy L, Fichtenbaum N, Keller S, DenBaars S P and Mishra U K 2006 High performance deeply-recessed GaN power HEMTs without surface passivation Electron. Lett.42 555–6

[99] [99] Caverly R H, Drozdovski N V and Quinn M J 2001 Gallium nitride-based microwave and RF control devices Microw. J.44 112–24

[100] [100] Zhang C B, Wang H G, Zhang J D, Du G X and Yang J 2014 Failure analysis on damaged GaAs HEMT MMIC caused by microwave pulse IEEE Trans. Electromagn. Compat.56 1545–9

[101] [101] Green B M, Chu K K, Chumbes E M, Smart J A, Shealy J R and Eastman L F 2000 The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs IEEE Electron Device Lett.21 268–70

[102] [102] Jiang C Y et al 2017 Piezotronic effect tuned AlGaN/GaN high electron mobility transistor Nanotechnology28 455203

[103] [103] Zimmer T, Bodi D O, Dumas J M, Labat N, Touboul A and Danto Y 1992 Kink effect in HEMT structures: a trap-related semi-quantitative model and an empirical approach for spice simulation Solid-State Electron.35 1543–8

[104] [104] Liu T et al 2017 Electrical transportation and piezotronic-effect modulation in AlGaN/GaN MOS HEMTs and unpassivated HEMTs Nano Energy39 53–59

[105] [105] Cui X, Cheng W J, Hua Q L, Liang R R, Hu W G and Wang Z L 2020 Enhanced performances of AlGaN/GaN HEMTs with dielectric engineering of HfZrOxNano Energy68 104361

[106] [106] Zhou X Y et al 2023 Magnetosensory power devices based on AlGaN/GaN heterojunctions for interactive electronics Adv. Electron. Mater.9 2200941

[107] [107] Sha W, Hua Q L, Shi Y H, Wang J W, Cui X, Dong Z L, Wang B J, Niu J N and Hu W G 2022 Adaptive wind-evoked power devices for autonomous motor control applications J. Mater. Chem. C 10 11783–90

[108] [108] Yin Y, Chen R F, Duo Y, He R, Yang J K, Ji X L, Long H, Wang J X and Wei T B 2023 Piezo-phototronic enhanced dual-wavelength InGaN/GaN multiple quantum wells Micro-LED arrays Semicond. Sci. Technol.38 115005

[109] [109] Guo Q, Li D, Hua Q L, Ji K Y, Sun W H, Hu W G and Wang Z L 2021 Enhanced heat dissipation in gallium nitride-based light-emitting diodes by piezo-phototronic effect Nano Lett.21 4062–70

[110] [110] Zheng Q et al 2021 Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array Sci. Adv.7 eabe7738

[111] [111] Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 InGaN/GaN multiple quantum well solar cells with long operating wavelengths Appl. Phys. Lett.94 063505

[112] [112] Chen Z Y et al 2016 Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs Appl. Phys. Lett.109 062104

[113] [113] Ren X, Li J, Gao D T, Wu L J and Pei G 2021 Analysis of a novel photovoltaic/thermal system using InGaN/GaN MQWs cells in high temperature applications Renew. Energy168 11–20

[114] [114] Jiang C Y, Jing L, Huang X, Liu M M, Du C H, Liu T, Pu X, Hu W G and Wang Z L 2017 Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezo-phototronic effect ACS Nano11 9405–12

[115] [115] Jiang C Y et al 2019 Enhanced photocurrent in InGaN/GaN MQWs solar cells by coupling plasmonic with piezo-phototronic effect Nano Energy57 300–6

[116] [116] Wang L F, Liu S H, Wang Z, Zhou Y L, Qin Y and Wang Z L 2016 Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress ACS Nano10 2636–43

[117] [117] Wang X D, Rohrer G S and Li H X 2018 Piezotronic modulations in electro- and photochemical catalysis MRS Bull.43 946–51

[118] [118] Xu S Y, Guo L M, Sun Q J and Wang Z L 2019 Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures Adv. Funct. Mater.29 1808737

[119] [119] Chan Y H, Kim J K, Liu D M, Liu P C K, Cheung Y M and Ng M W 2006 Comparative performance of gold wire bonding on rigid and flexible substrates J. Mater. Sci., Mater. Electron.17 597–606

[120] [120] Bai S, Wu W W, Qin Y, Cui N Y, Bayerl D J and Wang X D 2011 High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates Adv. Funct. Mater.21 4464–9

Tools

Get Citation

Copy Citation Text

Niu Jianan, Wang Jiangwen, Sha Wei, Long Yong, Ma Bei, Hu Weiguo. Manufacture and applications of GaN-based piezotronic and piezo-phototronic devices[J]. International Journal of Extreme Manufacturing, 2025, 7(1): 12005

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Topical Review

Received: Mar. 1, 2024

Accepted: Apr. 17, 2025

Published Online: Apr. 17, 2025

The Author Email:

DOI:10.1088/2631-7990/ad8732

Topics