Opto-Electronic Engineering, Volume. 50, Issue 10, 230167-1(2023)
Overlapping group sparsity on hyper-Laplacian prior of sparse angle CT reconstruction
[1] Jouini M S, Keskes N. Numerical estimation of rock properties and textural facies classification of core samples using X-ray computed tomography images[J]. Appl Math Modell, 41, 562-581(2017).
[2] Brenner D J, Hall E J. Computed tomography-an increasing source of radiation exposure[J]. N Engl J Med, 357, 2277-2284(2007).
[3] Wang G, Yu H Y, Ye Y B. A scheme for multisource interior tomography[J]. Med Phys, 36, 3575-3581(2009).
[4] Xu Q, Yu H Y, Mou X Q et al. Low-dose X-ray CT reconstruction via dictionary learning[J]. IEEE Trans Med Imaging, 31, 1682-1697(2012).
[5] Yu W, Wang C X, Nie X Y et al. Image reconstruction for few-view computed tomography based on ℓ0 sparse regularization[J]. Procedia Comput Sci, 107, 808-813(2017).
[6] Donoho D L. Compressed sensing[J]. IEEE Trans Inform Theory, 52, 1289-1306(2006).
[7] Zhang W K, Zhang H M, Wang L Y et al. Limited angle CT reconstruction by simultaneous spatial and radon domain regularization based on TV and data-driven tight frame[J]. Nucl Instrum Methods Phys Res Sect A:Accel, Spectrom, Detect Assoc Equip, 880, 107-117(2018).
[8] Miao J Y, Cao H L, Jin X B et al. Joint sparse regularization for dictionary learning[J]. Cogn Comput, 11, 697-710(2019).
[9] Li M, Fan Z T, Ji H et al. Wavelet frame based algorithm for 3D reconstruction in electron microscopy[J]. SIAM J Sci Comput, 36, B45-B69(2014).
[10] Wang Y L, Yang J F, Yin W T et al. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM J Imaging Sci, 1, 248-272(2008).
[11] Sidky E Y, Kao C M, Pan X C. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. J X-Ray Sci Technol, 14, 119-139(2006).
[12] Zhang X F, Liu H B. Linear programming-based reconstruction algorithm for limited angular sparse-view tomography[J]. Opt Lasers Eng, 140, 106524(2021).
[13] Lian X Y, Kong H H, Pan J X et al. Joint multi-channel total generalized variational algorithm for spectral CT reconstruction[J]. Opto-Electron Eng, 48, 210211(2021).
[14] Bao P, Zhou J L, Zhang Y. Few-view CT reconstruction with group-sparsity regularization[J]. Int J Numer Methods Biomed Eng, 34, e3101(2018).
[15] Jon K, Sun Y, Li Q X et al. Image restoration using overlapping group sparsity on hyper-Laplacian prior of image gradient[J]. Neurocomputing, 420, 57-69(2021).
[16] Liu J, Huang T Z, Selesnick I W et al. Image restoration using total variation with overlapping group sparsity[J]. Inform Sci, 295, 232-246(2015).
[17] Kong J, Lu K S, Jiang M. A new blind deblurring method via Hyper-Laplacian prior[J]. Procedia Comput Sci, 107, 789-795(2017).
[18] Boyd S P, Parikh N, Chu E et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Found Trends Mach Learn, 3, 1-122(2011).
[19] Hunter D R, Lange K. A tutorial on MM algorithms[J]. Am Stat, 58, 30-37(2004).
[20] Kong H H, Liu R, Yu H Y. Ordered-subset split-Bregman algorithm for interior tomography[J]. J X-Ray Sci Technol, 24, 221-240(2016).
Get Citation
Copy Citation Text
Ziwen Qi, Huihua Kong, Jiaxin Li, Jinxiao Pan. Overlapping group sparsity on hyper-Laplacian prior of sparse angle CT reconstruction[J]. Opto-Electronic Engineering, 2023, 50(10): 230167-1
Category: Article
Received: Jul. 10, 2023
Accepted: Sep. 20, 2023
Published Online: Jan. 22, 2024
The Author Email: Huihua Kong (孔慧华)