Opto-Electronic Engineering, Volume. 50, Issue 9, 230147-1(2023)

Research progress of reflectionless electromagnetic metasurfaces

Huiying Fan and Jie Luo*
Author Affiliations
  • School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
  • show less
    References(213)

    [1] T J Cui, D R Smith, R P Liu. Metamaterials: Theory, Design, and Applications(2010).

    [2] W S Cai, V Shalaev. Optical Metamaterials(2010).

    [3] N I Zheludev, Y S Kivshar. From metamaterials to metadevices. Nat Mater, 11, 917-924(2012).

    [4] V G Veselago. The electrodynamics of substances with simultaneously negative values of ϵ and μ. Sov Phys Usp, 10, 509-514(1968).

    [5] J B Pendry. Negative refraction makes a perfect lens. Phys Rev Lett, 85, 3966-3969(2000).

    [6] X Zhang, Z W Liu. Superlenses to overcome the diffraction limit. Nat Mater, 7, 435-441(2008).

    [7] D Lu, Z W Liu. Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun, 3, 1205(2012).

    [8] J B Pendry, D Schurig, D R Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [9] D Schurig, J J Mock, B J Justice et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [10] U Leonhardt. Optical conformal mapping. Science, 312, 1777-1780(2006).

    [11] Y Lai, H Y Chen, Z Q Zhang et al. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys Rev Lett, 102, 093901(2009).

    [12] N F Yu, P Genevet, M A Kats et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [13] X J Ni, N K Emani, A V Kildishev et al. Broadband light bending with plasmonic nanoantennas. Science, 335, 427(2012).

    [14] A V Kildishev, A Boltasseva, V M Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [15] N F Yu, F Capasso. Flat optics with designer metasurfaces. Nat Mater, 13, 139-150(2014).

    [16] N Meinzer, W L Barnes, I R Hooper. Plasmonic meta-atoms and metasurfaces. Nat Photonics, 8, 889-898(2014).

    [17] J P Turpin, J A Bossard, K L Morgan et al. Reconfigurable and tunable metamaterials: a review of the theory and applications. Int J Antennas Propag, 2014, 429837(2014).

    [18] H Cheng, Z C Liu, S Q Chen et al. Emergent functionality and controllability in few-layer metasurfaces. Adv Mater, 27, 5410-5421(2015).

    [19] S Walia, C M Shah, P Gutruf et al. Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales. Appl Phys Rev, 2, 011303(2015).

    [20] M B Pu, X Li, X L Ma et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv, 1, e1500396(2015).

    [21] X G Luo. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron, 58, 594201(2015).

    [22] H T Chen, A J Taylor, N F Yu. A review of metasurfaces: physics and applications. Rep Prog Phys, 79, 076401(2016).

    [23] L Zhang, S T Mei, K Huang et al. Advances in full control of electromagnetic waves with metasurfaces. Adv Opt Mater, 4, 818-833(2016).

    [24] S B Glybovski, S A Tretyakov, P A Belov et al. Metasurfaces: from microwaves to visible. Phys Rep, 634, 1-72(2016).

    [25] Y D Xu, Y Y Fu, H Y Chen. Planar gradient metamaterials. Nat Rev Mater, 1, 16067(2016).

    [26] S Liu, T J Cui. Concepts, working principles, and applications of coding and programmable metamaterials. Adv Opt Mater, 5, 1700624(2017).

    [27] P Genevet, F Capasso, F Aieta et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    [28] S M Kamali, E Arbabi, A Arbabi et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041-1068(2018).

    [29] Q He, S L Sun, S Y Xiao et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv Opt Mater, 6, 1800415(2018).

    [30] A E Minovich, A E Miroshnichenko, A Y Bykov et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev, 9, 195-213(2015).

    [31] G X Li, S Zhang, T Zentgraf. Nonlinear photonic metasurfaces. Nat Rev Mater, 2, 17010(2017).

    [32] A Krasnok, M Tymchenko, A Alù. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater Today, 21, 8-21(2018).

    [33] D Neshev, I Aharonovich. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci Appl, 7, 58(2018).

    [34] X Xie, X Li, M B Pu et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv Funct Mater, 28, 1706673(2018).

    [35] S L Sun, Q He, J M Hao et al. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics, 11, 380-479(2019).

    [36] A M Shaltout, V M Shalaev, M L Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [37] T Cui, B F Bai, H B Sun. Tunable metasurfaces based on active materials. Adv Funct Mater, 29, 1806692(2019).

    [38] Y Q Hu, X D Wang, X H Luo et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics, 9, 3755-3780(2020).

    [39] X F Zang, B S Yao, L Chen et al. Metasurfaces for manipulating terahertz waves. Light Adv Manuf, 2, 10(2021).

    [40] X Xie, M B Pu, J J Jin et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett, 126, 183902(2021).

    [41] Y H Guo, S C Zhang, M B Pu et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl, 10, 63(2021).

    [42] K Du, H Barkaoui, X D Zhang et al. Optical metasurfaces towards multifunctionality and tunability. Nanophotonics, 11, 1761-1781(2022).

    [43] G Yang, Y H Guo, M B Pu et al. Miniature computational spectral detection technology based on correlation value selection. Opto-Electron Eng, 49, 220130(2022).

    [44] A Epstein, G V Eleftheriades. Huygens' metasurfaces via the equivalence principle: design and applications. J Opt Soc Am B, 33, A31-A49(2016).

    [45] M Chen, M Kim, A M H Wong et al. Huygens' metasurfaces from microwaves to optics: a review. Nanophotonics, 7, 1207-1231(2018).

    [46] V G Ataloglou, M Chen, M Kim et al. Microwave Huygens' metasurfaces: fundamentals and applications. IEEE J Microw, 1, 374-388(2021).

    [47] L L Huang, X Z Chen, H Mühlenbernd et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett, 12, 5750-5755(2012).

    [48] S L Sun, Q He, S Y Xiao et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater, 11, 426-431(2012).

    [49] S Liu, T J Cui, Q Xu et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci Appl, 5, e16076(2016).

    [50] T J Cui, M Q Qi, X Wan et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl, 3, e218(2014).

    [51] C Pfeiffer, A Grbic. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett, 110, 197401(2013).

    [52] C Pfeiffer, A Grbic. Millimeter-wave transmitarrays for wavefront and polarization control. IEEE Trans Microwave Theory Techn, 61, 4407-4417(2013).

    [53] J Luo, H C Chu, R W Peng et al. Ultra-broadband reflectionless Brewster absorber protected by reciprocity. Light Sci Appl, 10, 89(2021).

    [54] H Y Fan, J S Li, Y Lai et al. Optical Brewster metasurfaces exhibiting ultrabroadband reflectionless absorption and extreme angular asymmetry. Phys Rev Appl, 16, 044064(2021).

    [55] Z K Ma, H Y Fan, H Zhou et al. Broadband perfect transparency-to-absorption switching in tilted anisotropic metamaterials based on the anomalous Brewster effect. Opt Express, 29, 39186-39199(2021).

    [56] H Y Fan, H C Chu, H Luo et al. Brewster metasurfaces for ultrabroadband reflectionless absorption at grazing incidence. Optica, 9, 1138-1148(2022).

    [57] L L Huang, X Z Chen, B F Bai et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci Appl, 2, e70(2013).

    [58] A Pors, M G Nielsen, T Bernardin et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci Appl, 3, e197(2014).

    [59] W J Sun, Q He, S L Sun et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci Appl, 5, e16003(2016).

    [60] H T Chen, J F Zhou, J F O'Hara et al. Antireflection coating using metamaterials and identification of its mechanism. Phys Rev Lett, 105, 073901(2010).

    [61] M Kang, T H Feng, H T Wang et al. Wave front engineering from an array of thin aperture antennas. Opt Express, 20, 15882-15890(2012).

    [62] F Aieta, P Genevet, M A Kats et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett, 12, 4932-4936(2012).

    [63] D M Lin, P Y Fan, E Hasman et al. Dielectric gradient metasurface optical elements. Science, 345, 298-302(2014).

    [64] M Khorasaninejad, W T Chen, R C Devlin et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [65] A Arbabi, Y Horie, A J Ball et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun, 6, 7069(2015).

    [66] M Khorasaninejad, F Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [67] K Chen, Y J Feng, F Monticone et al. A reconfigurable active Huygens' metalens. Adv Mater, 29, 1606422(2017).

    [68] S M Wang, P C Wu, V C Su et al. A broadband achromatic metalens in the visible. Nat Nanotechnol, 13, 227-232(2018).

    [69] R J Lin, V C Su, S M Wang et al. Achromatic metalens array for full-colour light-field imaging. Nat Nanotechnol, 14, 227-231(2019).

    [70] L Li, Z X Liu, X F Ren et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science, 368, 1487-1490(2020).

    [71] M Y Pan, Y F Fu, M J Zheng et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci Appl, 11, 195(2022).

    [72] N K Grady, J E Heyes, D R Chowdhury et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340, 1304-1307(2013).

    [73] C Pfeiffer, C Zhang, V Ray et al. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys Rev Lett, 113, 023902(2014).

    [74] R H Fan, Y Zhou, X P Ren et al. Freely tunable broadband polarization rotator for terahertz waves. Adv Mater, 27, 1201-1206(2015).

    [75] H X Xu, S W Tang, G M Wang et al. Multifunctional microstrip array combining a linear polarizer and focusing metasurface. IEEE Trans Antennas Propagat, 64, 3676-3682(2016).

    [76] X L Ma, M B Pu, X Li et al. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv, 2, 180023(2019).

    [77] N I Landy, S Sajuyigbe, J J Mock et al. Perfect metamaterial absorber. Phys Rev Lett, 100, 207402(2008).

    [78] H T Chen, J F O'Hara, A K Azad et al. Manipulation of terahertz radiation using metamaterials. Laser Photonics Rev, 5, 513-533(2011).

    [79] C M Watts, X L Liu, W J Padilla. Metamaterial electromagnetic wave absorbers. Adv Mater, 24, OP98-OP120(2012).

    [80] Y X Cui, Y R He, Y Jin et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev, 8, 495-520(2014).

    [81] Y Ra’di, C R Simovski, S A Tretyakov. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys Rev Appl, 3, 037001(2015).

    [82] R Alaee, M Albooyeh, C Rockstuhl. Theory of metasurface based perfect absorbers. J Phys D:Appl Phys, 50, 503002(2017).

    [83] L Feng, P C Huo, Y Z Liang et al. Photonic metamaterial absorbers: morphology engineering and interdisciplinary applications. Adv Mater, 32, 1903787(2020).

    [84] X Lan, Q R Deng, W T Zhang et al. Efficient chiral absorber based on twisted catenary structure. Opto-Electron Eng, 49, 220157(2022).

    [85] X J Ni, Z J Wong, M Mrejen et al. An ultrathin invisibility skin cloak for visible light. Science, 349, 1310-1314(2015).

    [86] D L Sounas, R Fleury, A Alù. Unidirectional cloaking based on metasurfaces with balanced loss and gain. Phys Rev Appl, 4, 014005(2015).

    [87] H C Chu, Q Li, B B Liu et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci Appl, 7, 50(2018).

    [88] Y J Huang, M B Pu, F Zhang et al. Broadband functional metasurfaces: achieving nonlinear phase generation toward achromatic surface cloaking and lensing. Adv Opt Mater, 7, 1801480(2019).

    [89] J Luo, X Li, X Y Zhang et al. Deep-learning-enabled inverse engineering of multi-wavelength invisibility-to-superscattering switching with phase-change materials. Opt Express, 29, 10527-10537(2021).

    [90] T Cai, G M Wang, S W Tang et al. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces. Phys Rev Appl, 8, 034033(2017).

    [91] M R Akram, M Q Mehmood, X D Bai et al. High efficiency ultrathin transmissive metasurfaces. Adv Opt Mater, 7, 1801628(2019).

    [92] M Decker, I Staude, M Falkner et al. High-efficiency dielectric Huygens' surfaces. Adv Opt Mater, 3, 813-820(2015).

    [93] M Selvanayagam, G V Eleftheriades. Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. Opt Express, 21, 14409-14429(2013).

    [94] J P S Wong, M Selvanayagam, G V Eleftheriades. Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces. Photonics Nanostruct Fundam Appl, 12, 360-375(2014).

    [95] C Pfeiffer, N K Emani, A M Shaltout et al. Efficient light bending with isotropic metamaterial Huygens' surfaces. Nano Lett, 14, 2491-2497(2014).

    [96] W T Chen, K Y Yang, C M Wang et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett, 14, 225-230(2014).

    [97] M Kim, A M H Wong, G V Eleftheriades. Optical Huygens' metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys Rev X, 4, 041042(2014).

    [98] J Sautter, I Staude, M Decker et al. Active tuning of all-dielectric metasurfaces. ACS Nano, 9, 4308-4315(2015).

    [99] V S Asadchy, I A Faniayeu, Y Ra’di et al. Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption. Phys Rev X, 5, 031005(2015).

    [100] V S Asadchy, Y Ra'di, J Vehmas et al. Functional metamirrors using bianisotropic elements. Phys Rev Lett, 114, 095503(2015).

    [101] J P S Wong, M Selvanayagam, G V Eleftheriades. Polarization considerations for scalar Huygens metasurfaces and characterization for 2-D refraction. IEEE Trans Microwave Theory Techn, 63, 913-924(2015).

    [102] P P Iyer, N A Butakov, J A Schuller. Reconfigurable semiconductor phased-array metasurfaces. ACS Photonics, 2, 1077-1084(2015).

    [103] K E Chong, L Wang, I Staude et al. Efficient polarization-insensitive complex wavefront control using Huygens' metasurfaces based on dielectric resonant meta-atoms. ACS Photonics, 3, 514-519(2016).

    [104] R Paniagua-Domínguez, Y F Yu, A E Miroshnichenko et al. Generalized Brewster effect in dielectric metasurfaces. Nat Commun, 7, 10362(2016).

    [105] V E Babicheva, A B Evlyukhin. Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical responses. Laser Photonics Rev, 11, 1700132(2017).

    [106] A M H Wong, P Christian, G V Eleftheriades. Binary Huygens' metasurfaces: experimental demonstration of simple and efficient near-grazing retroreflectors for TE and TM polarizations. IEEE Trans Antennas Propagat, 66, 2892-2903(2018).

    [107] D R Abujetas, J A Sánchez-Gil, J J Sáenz. Generalized Brewster effect in high-refractive-index nanorod-based metasurfaces. Opt Express, 26, 31523-31541(2018).

    [108] W Liu, Y S Kivshar. Generalized Kerker effects in nanophotonics and meta-optics [Invited]. Opt Express, 26, 13085-13105(2018).

    [109] A M H Wong, G V Eleftheriades. Perfect anomalous reflection with a bipartite Huygens' metasurface. Phys Rev X, 8, 011036(2018).

    [110] M Chen, E Abdo-Sánchez, A Epstein et al. Theory, design, and experimental verification of a reflectionless bianisotropic Huygens' metasurface for wide-angle refraction. Phys Rev B, 97, 125433(2018).

    [111] D H Kwon, G Ptitcyn, A Díaz-Rubio et al. Transmission magnitude and phase control for polarization-preserving reflectionless metasurfaces. Phys Rev Appl, 9, 034005(2018).

    [112] C Liu, L Chen, T S Wu et al. All-dielectric three-element transmissive Huygens' metasurface performing anomalous refraction. Photonics Res, 7, 1501-1510(2019).

    [113] M Chen, A Epstein, G V Eleftheriades. Design and experimental verification of a passive Huygens' metasurface lens for gain enhancement of frequency-scanning slotted-waveguide antennas. IEEE Trans Antennas Propagat, 67, 4678-4692(2019).

    [114] Z W Sun, B Sima, J M Zhao et al. Electromagnetic polarization conversion based on Huygens' metasurfaces with coupled electric and magnetic resonances. Opt Express, 27, 11006-11017(2019).

    [115] Z M Lin, X W Li, R Z Zhao et al. High-efficiency Bessel beam array generation by Huygens metasurfaces. Nanophotonics, 8, 1079-1085(2019).

    [116] W M Hao, M Deng, S Q Chen et al. High-efficiency generation of airy beams with Huygens' metasurface. Phys Rev Appl, 11, 054012(2019).

    [117] A A Fathnan, M K Liu, D A Powell. Achromatic Huygens' metalenses with deeply subwavelength thickness. Adv Opt Mater, 8, 2000754(2020).

    [118] A Rahimzadegan, D Arslan, D Dams et al. Beyond dipolar Huygens' metasurfaces for full-phase coverage and unity transmittance. Nanophotonics, 9, 75-82(2020).

    [119] M Chen, G V Eleftheriades. Omega-bianisotropic wire-loop Huygens' metasurface for reflectionless wide-angle refraction. IEEE Trans Antennas Propagat, 68, 1477-1490(2020).

    [120] A Howes, Z H Zhu, D Curie et al. Optical limiting based on Huygens' metasurfaces. Nano Lett, 20, 4638-4644(2020).

    [121] Z C Wang, J Liu, X M Ding et al. Three-dimensional microwave holography based on broadband Huygens' metasurface. Phys Rev Appl, 13, 014033(2020).

    [122] P Ang, G Y Xu, G V Eleftheriades. Invisibility cloaking with passive and active Huygens's metasurfaces. Appl Phys Lett, 118, 071903(2021).

    [123] H C Chu, H Y Zhang, Y Zhang et al. Invisible surfaces enabled by the coalescence of anti-reflection and wavefront controllability in ultrathin metasurfaces. Nat Commun, 12, 4523(2021).

    [124] W T Song, X N Liang, S Q Li et al. Large-scale Huygens' metasurfaces for holographic 3D near-eye displays. Laser Photonics Rev, 15, 2000538(2021).

    [125] I Derafshi, N Komjani. A new high aperture efficiency transmitarray antenna based on Huygens metasurfaces. IEEE Trans Antennas Propagat, 70, 5458-5467(2022).

    [126] T Zhang, Y P Duan, L X Huang et al. Huygens' metasurface based on induced magnetism: enhance the microwave absorption performance of magnetic coating. Adv Mater Interfaces, 9, 2102559(2022).

    [127] Z W Yang, M K Liu, A Komar et al. Phase‐only tuning of extreme Huygens metasurfaces enabled by optical anisotropy. Adv Opt Mater, 10, 2101893(2022).

    [128] H J Li, G G Wei, H M Zhou et al. Polarization-independent near-infrared superabsorption in transition metal dichalcogenide Huygens metasurfaces by degenerate critical coupling. Phys Rev B, 105, 165305(2022).

    [129] A Hassanfiroozi, Y C Cheng, S H Huang et al. Toroidal‐assisted generalized Huygens' sources for highly transmissive plasmonic metasurfaces. Laser Photonics Rev, 16, 2100525(2022).

    [130] W T Song, X N Liang, S Q Li et al. Retinal projection near‐eye displays with Huygens' metasurfaces. Adv Opt Mater, 11, 2202348(2023).

    [131] A Epstein, G V Eleftheriades. Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces. IEEE Trans Antennas Propagat, 64, 3880-3895(2016).

    [132] M Kerker, D S Wang, C L Giles. Electromagnetic scattering by magnetic spheres. J Opt Soc Am, 73, 765-767(1983).

    [133] J Y Yang, S Gurung, S Bej et al. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep Prog Phys, 85, 036101(2022).

    [134] D W Berreman. Optics in stratified and anisotropic media: 4×4-matrix formulation. J Opt Soc Am, 62, 502-510(1972).

    [135] J Luo, W X Lu, Z H Hang et al. Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index. Phys Rev Lett, 112, 073903(2014).

    [136] J Luo, Z H Hang, C T Chan et al. Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions. Laser Photonics Rev, 9, 523-529(2015).

    [137] I Liberal, N Engheta. Near-zero refractive index photonics. Nat Photonics, 11, 149-158(2017).

    [138] X X Niu, X Y Hu, S S Chu et al. Epsilon-near-zero photonics: a new platform for integrated devices. Adv Opt Mater, 6, 1701292(2018).

    [139] N Kinsey, C Devault, A Boltasseva et al. Near-zero-index materials for photonics. Nat Rev Mater, 4, 742-760(2019).

    [140] Y Li, C T Chan, E Mazur. Dirac-like cone-based electromagnetic zero-index metamaterials. Light Sci Appl, 10, 203(2021).

    [141] J Luo, Y Lai. Hermitian and non-hermitian dirac-like cones in photonic and phononic structures. Front Phys, 10, 845624(2022).

    [142] W J Ji, J Luo, H C Chu et al. Crosstalk prohibition at the deep-subwavelength scale by epsilon-near-zero claddings. Nanophotonics, 12, 2007-2017(2023).

    [143] D Brewster. IX. On the laws which regulate the polarisation of light by reflexion from transparent bodies. By David Brewster, LL. D. F. R. S. Edin. and F. S. A. Edin. In a letter addressed to Right Hon. Sir Joseph Banks, Bart. K. B. P. R. S. Philos Trans Roy Soc London, 105, 125-159(1815).

    [144] H F Mahlein. Generalized Brewster-angle conditions for quarter-wave multilayers at non-normal incidence. J Opt Soc Am, 64, 647-653(1974).

    [145] A Lakhtakia. Would Brewster recognize today's Brewster angle?. Opt News, 15, 14-18(1989).

    [146] C Wang, Z B Zhu, W Z Cui et al. All-angle Brewster effect observed on a terahertz metasurface. Appl Phys Lett, 114, 191902(2019).

    [147] J Y Hua, E K Hua, F B Zhou et al. Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex. Light Sci Appl, 10, 213(2021).

    [148] I Kim, R J Martins, J Jang et al. Nanophotonics for light detection and ranging technology. Nat Nanotechnol, 16, 508-524(2021).

    [149] J Luo, Y T Yang, Z Q Yao et al. Ultratransparent media and transformation optics with shifted spatial dispersions. Phys Rev Lett, 117, 223901(2016).

    [150] Y C Liu, G P Wang, S Zhang. A nonlocal effective medium description of topological weyl metamaterials. Laser Photonics Rev, 15, 2100129(2021).

    [151] T T Song, H C Chu, J Luo et al. Ultracompact photonic circuits without cladding layers. Phys Rev X, 12, 011053(2022).

    [152] Q H Lv, C Jin, B C Zhang et al. Ultrawide‐angle ultralow‐reflection phenomenon for transverse electric mode in anisotropic metasurface. Adv Opt Mater, 10, 2102400(2022).

    [153] Y Tamayama, T Nakanishi, K Sugiyama et al. Observation of Brewster's effect for transverse-electric electromagnetic waves in metamaterials: experiment and theory. Phys Rev B, 73, 193104(2006).

    [154] Z Q Yao, J Luo, Y Lai. Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions. Opt Express, 25, 30931-30938(2017).

    [155] L Xu, H Y Chen. Transformation metamaterials. Adv Mater, 33, 2005489(2021).

    [156] Z T Chu, T F Li, J F Wang et al. Tailoring permittivity using metasurface: a facile way of enhancing extreme-angle transmissions for both TE- and TM-polarizations. Opt Express, 30, 29365-29378(2022).

    [157] D S Dong, J Yang, Q Cheng et al. Terahertz broadband low-reflection metasurface by controlling phase distributions. Adv Opt Mater, 3, 1405-1410(2015).

    [158] X Y Zheng, J Lin, Z Wang et al. Manipulating light transmission and absorption via an achromatic reflectionless metasurface. PhotoniX, 4, 3(2023).

    [159] T W Ebbesen, H J Lezec, H F Ghaemi et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [160] C Genet, T W Ebbesen. Light in tiny holes. Nature, 445, 39-46(2007).

    [161] Abajo F J G de. Colloquium: light scattering by particle and hole arrays. Rev Mod Phys, 79, 1267-1290(2007).

    [162] F J Garcia-Vidal, L Martin-Moreno, T W Ebbesen et al. Light passing through subwavelength apertures. Rev Mod Phys, 82, 729-787(2010).

    [163] J V Coe, K R Rodriguez, S Teeters-Kennedy et al. Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding. J Phys Chem C, 111, 17459-17472(2007).

    [164] Y Z Chen, C X Zhou, X G Luo et al. Structured lens formed by a 2D square hole array in a metallic film. Opt Lett, 33, 753-755(2008).

    [165] J V Coe, J M Heer, S Teeters-Kennedy et al. Extraordinary transmission of metal films with arrays of subwavelength holes. Annu Rev Phys Chem, 59, 179-202(2008).

    [166] R Gordon, A G Brolo, D Sinton et al. Resonant optical transmission through hole-arrays in metal films: physics and applications. Laser Photonics Rev, 4, 311-335(2010).

    [167] F I Baida, A Belkhir, O Arar et al. Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation. Micron, 41, 742-745(2010).

    [168] C G Hu, M B Pu, X Li et al. Extraordinary optical transmission induced by electric resonance ring and its dynamic manipulation at far-infrared regime. Opt Express, 19, 18109-18115(2011).

    [169] X Zhang, H T Liu. Progress in extraordinary optical transmission. Prog Phys, 36, 118-127(2016).

    [170] Y Oh, K Kim, S Hwang et al. Recent advances of nanostructure implemented spectroscopic sensors-A brief overview. Appl Spectrosc Rev, 51, 656-668(2016).

    [171] Z H Yang, Y Song, S Chen et al. Control of EOT of subwavelength metal bullseye structures by coaxial nano-columns. Opto-Electron Eng, 45, 180207(2018).

    [172] X H Zhang, X Li, J J Jin et al. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes. Nanoscale, 10, 9304-9310(2018).

    [173] Y Q Wang, X L Ma, X Li et al. Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron Adv, 1, 180013(2018).

    [174] J F Liu, J Chen, K K Li et al. Broadband cross-slots fractal nano-antenna and its extraordinary optical transmission characteristics. Opto-Electron Eng, 47, 190422(2020).

    [175] M Fleischhauer, A Imamoglu, J P Marangos. Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys, 77, 633-673(2005).

    [176] Q F Xu, S Sandhu, M L Povinelli et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys Rev Lett, 96, 123901(2006).

    [177] N Papasimakis, V A Fedotov, N I Zheludev et al. Metamaterial analog of electromagnetically induced transparency. Phys Rev Lett, 101, 253903(2008).

    [178] Y M Yang, I I Kravchenko, D P Briggs et al. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun, 5, 5753(2014).

    [179] J Mørk, P Lunnemann, W Xue et al. Slow and fast light in semiconductor waveguides. Semicond Sci Technol, 25, 083002(2010).

    [180] Y Hadad, D L Sounas, A Alu. Space-time gradient metasurfaces. Phys Rev B, 92, 100304(2015).

    [181] X Q Zhang, N N Xu, K N Qu et al. Electromagnetically induced absorption in a three-resonator metasurface system. Sci Rep, 5, 10737(2015).

    [182] R Yahiaoui, J A Burrow, S M Mekonen et al. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling. Phys Rev B, 97, 155403(2018).

    [183] Y C Liu, B B Li, Y F Xiao. Electromagnetically induced transparency in optical microcavities. Nanophotonics, 6, 789-811(2017).

    [184] L J Ma, O Slattery, X Tang. Optical quantum memory based on electromagnetically induced transparency. J Opt, 19, 043001(2017).

    [185] M F Limonov, M V Rybin, A N Poddubny et al. Fano resonances in photonics. Nat Photonics, 11, 543-554(2017).

    [186] H Z Liu, C Guo, G Vampa et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat Physics, 14, 1006-1010(2018).

    [187] C W Ma, W Y Ma, Y Tan et al. High Q-factor terahertz metamaterial based on analog of electromagnetically induced transparency and its sensing characteristics. Opto-Electron Eng, 45, 180298(2018).

    [188] Y Z Tang, W Y Ma, Y H Wei et al. A tunable terahertz metamaterial and its sensing performance. Opto-Electron Eng, 44, 453-457(2017).

    [189] T T Kim, H D Kim, R K Zhao et al. Electrically tunable slow light using graphene metamaterials. ACS Photonics, 5, 1800-1807(2018).

    [190] Y You, Y Q Hu, G W Lin et al. Quantum nonreciprocity based on electromagnetically induced transparency in chiral quantum-optical systems. Phys Rev A, 103, 063706(2021).

    [191] I Bayrakli. Electromagnetically induced transparency in natural and artificial molecules. Opt Laser Technol, 141, 107168(2021).

    [192] J Zhang, N Mu, L H Liu et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens Bioelectron, 185, 113241(2021).

    [193] S Liu, A Noor, L L Du et al. Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces. ACS Photonics, 3, 1968-1977(2016).

    [194] G Lavigne, C Caloz. Generalized Brewster effect using bianisotropic metasurfaces. Opt Express, 29, 11361-11370(2021).

    [195] Z Zhang, Z Y Che, X Y Liang et al. Realizing generalized Brewster effect by generalized Kerker effect. Phys Rev Appl, 16, 054017(2021).

    [196] J B Sun, L Y Liu, G Y Dong et al. An extremely broad band metamaterial absorber based on destructive interference. Opt Express, 19, 21155-21162(2011).

    [197] X L Liu, T Tyler, T Starr et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett, 107, 045901(2011).

    [198] H Tao, C M Bingham, D Pilon et al. A dual band terahertz metamaterial absorber. J Phys D:Appl Phys, 43, 225101(2010).

    [199] H X Xu, G M Wang, M Q Qi et al. Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Phys Rev B, 86, 205104(2012).

    [200] P C Wu, N Papasimakis, D P Tsai. Self-affine graphene metasurfaces for tunable broadband absorption. Phys Rev Appl, 6, 044019(2016).

    [201] L Zhou, Y L Tan, J Y Wang et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photonics, 10, 393-398(2016).

    [202] L Zhou, Y L Tan, D X Ji et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv, 2, e1501227(2016).

    [203] Y X Cui, K H Fung, J Xu et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett, 12, 1443-1447(2012).

    [204] D X Ye, Z Y Wang, K W Xu et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys Rev Lett, 111, 187402(2013).

    [205] G Wetzstein, A Ozcan, S Gigan et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [206] W Ma, Z C Liu, Z A Kudyshev et al. Deep learning for the design of photonic structures. Nat Photonics, 15, 77-90(2021).

    [207] P R Wiecha, A Arbouet, C Girard et al. Deep learning in nano-photonics: inverse design and beyond. Photonics Res, 9, B182-B200(2021).

    [208] Y T Jia, C Qian, Z X Fan et al. In situ customized illusion enabled by global metasurface reconstruction. Adv Funct Mater, 32, 2109331(2022).

    [209] S S An, B W Zheng, M Julian et al. Deep neural network enabled active metasurface embedded design. Nanophotonics, 11, 4149-4158(2022).

    [210] S Krasikov, A Tranter, A Bogdanov et al. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv, 5, 210147(2022).

    [211] Y B Jin, L S He, Z H Wen et al. Intelligent on-demand design of phononic metamaterials. Nanophotonics, 11, 439-460(2022).

    [212] J T Chen, C Qian, J Zhang et al. Correlating metasurface spectra with a generation-elimination framework. Nat Commun, 14, 4872(2023).

    [213] J J Guo, Y L Zhang, M Huang et al. Electromagnetically large cylinders with duality symmetry by hybrid neural networks. Opt Laser Technol, 168, 109935(2024).

    Tools

    Get Citation

    Copy Citation Text

    Huiying Fan, Jie Luo. Research progress of reflectionless electromagnetic metasurfaces[J]. Opto-Electronic Engineering, 2023, 50(9): 230147-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jun. 26, 2023

    Accepted: Sep. 1, 2023

    Published Online: Jan. 24, 2024

    The Author Email: Luo Jie (罗杰)

    DOI:10.12086/oee.2023.230147

    Topics