Spectroscopy and Spectral Analysis, Volume. 41, Issue 7, 2196(2021)

Fast Classification Method of Black Goji Berry (Lycium Ruthenicum Murr.) Based on Hyperspectral and Ensemble Learning

Wei LU1、1;, Miao-miao CAI1、1;, Qiang ZHANG2、2;, and Shan LI3、3;
Author Affiliations
  • 11. Jiangsu Provincial Laboratory of Modern Facility Agriculture Technology and Equipment Engineering, College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
  • 22. School of Water Resources and Hydropower, Qinghai University, Xining 810016, China
  • 33. School of Life Science and Technology, Tongji University, Shanghai 200092, China
  • show less
    Figures & Tables(9)
    Hyperspectral imaging system
    Automatic ROI extraction in hyperspectral images
    Average reflection informations of carpopodium, sarcocarp and background
    Stacking ensemble learning process(a): Training and prediction models for metamodels; (b): General flowchart
    Flow chart of fast and non-destructive grading model of black goji berry
    Spectral curves of black goji berries before and after pretreatment(a): Raw spectra of carpopodium; (b): Raw spectra of sarcocarp; (c): Spectra of carpopodium after FD treatment; (d): Spectra of sarcocarp after FD treatment; (e): Average spectra of different grades of black goji berrycarpopodium after FD treatment; (f): Average spectra of different grades of black goji berrysarcocarp after FD treatment
    • Table 1. Anthocyanin content of four grades of black goji berry

      View table
      View in Article

      Table 1. Anthocyanin content of four grades of black goji berry

      等级名称花青素含量H/(mg·L-1)
      NMH-grade130.57
      NMH-grade224.32
      NMH-grade323.44
      NMH-grade420.37
    • Table 2. PCA-based modeling results

      View table
      View in Article

      Table 2. PCA-based modeling results

      特征提取方法PCASPACARS
      分类器预处理果柄果肉果柄果肉0.783 30.933 3
      LIBSVMFD0.800 00.779 20.666 70.883 30.300 00.250 0
      FFT0.250 00.266 70.250 00.304 20.483 30.395 8
      HT0.316 70.266 70.533 30.475 00.350 00.395 8
      SG0.300 00.333 30.516 70.333 30.483 30.787 5
      Normalize0.366 70.508 30.483 30.725 00.783 30.937 5
      SNV0.683 30.775 00.766 70.895 80.516 70.800 0
      LDAFD0.733 30.920 80.650 00.900 00.366 70.679 2
      FFT0.400 00.337 50.500 00.554 20.466 70.654 2
      HT0.416 70.579 20.516 70.729 20.450 00.495 8
      SG0.633 30.687 50.833 30.820 80.912 50.933 3
      Normalize0.383 30.333 30.912 50.941 70.383 30.795 8
      SNV0.716 70.691 70.816 70.929 20.700 00.812 5
      KNNFD0.716 70.758 30.716 70.787 50.616 70.858 3
      FFT0.366 70.383 30.516 70.595 80.600 00.775 0
      HT0.416 70.520 80.516 70.816 70.683 30.845 8
      SG0.666 70.737 50.683 30.829 20.333 30.566 7
      Normalize0.383 30.475 00.300 00.491 70.633 30.812 5
      SNV0.516 70.737 50.600 00.812 50.783 30.941 7
      RFFD0.666 70.829 20.766 70.912 50.550 00.812 5
      FFT0.483 30.245 80.583 30.800 00.583 30.904 2
      HT0.450 00.550 00.500 00.904 20.683 30.854 2
      SG0.566 70.716 70.683 30.875 00.350 00.612 5
      Normalize0.176 70.575 00.383 30.570 80.733 30.762 5
      SNV0.566 70.854 20.616 70.783 30.750 00.900 0
      NBFD0.733 30.883 30.816 70.883 30.483 30.641 7
      FFT0.483 30.433 30.433 30.629 20.483 30.829 2
      HT0.516 70.608 30.466 70.891 70.633 30.750 0
      SG0.683 30.691 70.566 70.750 00.250 00.366 7
      Normalize0.233 30.658 30.333 30.354 20.666 70.800 0
      SNV0.666 70.716 70.483 30.766 70.783 30.933 3
    • Table 3. Modeling results of Stacking ensemble learning

      View table
      View in Article

      Table 3. Modeling results of Stacking ensemble learning

      特征提
      取方法
      预处理训练集测试集
      果柄果肉果柄果肉
      PCAFD0.944 60.955 40.766 70.908 3
      FFT0.326 80.300 00.316 70.262 5
      HT0.598 20.337 50.383 30.312 5
      SG0.557 10.726 80.616 70.687 5
      Normalize0.408 90.935 70.350 00.512 5
      SNV0.930 40.935 70.683 30.762 5
      SPAFD0.837 50.975 00.750 00.983 3
      FFT0.632 10.678 60.533 30.537 5
      HT0.553 60.846 40.516 70.729 2
      SG0.905 40.914 30.833 30.820 8
      Normalize0.364 30.817 90.416 70.633 3
      SNV0.955 40.950 00.816 70.912 5
      CARSFD0.980 40.894 60.500 00.800 0
      FFT0.455 40.554 20.266 70.483 3
      HT0.728 60.782 10.450 00.604 2
      SG0.450 00.612 50.300 00.404 2
      Normalize0.941 10.950 00.916 70.804 2
      SNV0.926 80.962 50.733 30.916 7
    Tools

    Get Citation

    Copy Citation Text

    Wei LU, Miao-miao CAI, Qiang ZHANG, Shan LI. Fast Classification Method of Black Goji Berry (Lycium Ruthenicum Murr.) Based on Hyperspectral and Ensemble Learning[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2196

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 16, 2020

    Accepted: --

    Published Online: Sep. 8, 2021

    The Author Email:

    DOI:10.3964/j.issn.1000-0593(2021)07-2196-09

    Topics