Photonics Research, Volume. 9, Issue 7, 1324(2021)

Achieving high-responsivity near-infrared detection at room temperature by nano-Schottky junction arrays via a black silicon/platinum contact approach

Fei Hu1, Li Wu1, Xiyuan Dai1, Shuai Li1, Ming Lu1,2、*, and Jian Sun1,3、*
Author Affiliations
  • 1Department of Optical Science and Engineering, and Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China
  • 2e-mail: minglu55@fudan.edu.cn
  • 3e-mail: jsun@fudan.edu.cn
  • show less
    References(25)

    [1] M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto. Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives. Sensors, 10, 10571-10600(2010).

    [2] M. Casalino, G. Coppola, R. M. De La Rue, D. F. Logan. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photon. Rev., 10, 895-921(2016).

    [3] W. Diels, M. Steyaert, F. Tavernier. Schottky photodiodes in bulk CMOS for high-speed 1310/1550 nm optical receivers. IEEE J. Sel. Top. Quantum Electron., 24, 3801908(2018).

    [4] M. Kimata. Development of infrared focal plane arrays. Sens. Mater., 30, 1221-1230(2018).

    [5] M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto. Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm. Opt. Express, 20, 12599-12609(2012).

    [6] I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express, 20, 28594-28602(2012).

    [7] B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, U. Levy. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica, 2, 335-338(2015).

    [8] M. Alavirad, A. Olivieri, L. Roy, P. Berini. High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors. Opt. Express, 24, 22544-22554(2016).

    [9] M. A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, H. Savin. Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction. Nat. Photonics, 10, 777-781(2016).

    [10] M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Käsebier, F. Schrempel, E.-B. Kley, A. Tünnermann. A normal-incidence PtSi photoemissive detector with black silicon light-trapping. J. Appl. Phys., 114, 183102(2013).

    [11] L. X. Wang, Z. Q. Zhou, H. C. Hao, M. Lu. A porous Si-emitter crystalline-Si solar cell with 18.97% efficiency. Nanotechnology, 27, 425207(2016).

    [12] Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, K. M. Ho. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays. Sci. Rep., 5, 7810(2015).

    [13] F. D. Shepherd, A. C. Yang. Silicon Schottky retinas for infrared imaging. International Electron Devices Meeting, 310-313(1973).

    [14] S. A. Ding, Z. J. Xu. Study of the relation between interfacial reaction and formation of Schottky barriers. J. Infrared Millim. Waves, 12, 385-391(1993).

    [15] S. P. Murarka. Silicides for VLSI Applications, 29-70(1983).

    [16] Z. J. Qiu, Z. Zhang, M. Ostling, S. L. Zhang. A comparative study of two different schemes to dopant segregation at NiSi/Si and PtSi/Si interfaces for Schottky barrier height lowering. IEEE Trans. Electron Devices, 55, 396-403(2008).

    [17] M. Zacharias, P. Streitenberger. Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces. Phys. Rev. B, 62, 8391-8396(2000).

    [18] Y. C. Fang, W. Q. Li, L. J. Qi, L. Y. Li, Y. Y. Zhao, Z. J. Zhang, M. Lu. Photoluminescence from SiOx thin films: effects of film thickness and annealing temperature. Nanotechnology, 15, 494-500(2004).

    [19] K. Xiong, S. Lu, D. Jiang, J. Dong, H. Yang. Effective recombination velocity of textured surfaces. Appl. Phys. Lett., 96, 193107(2010).

    [20] Z. Q. Zhou, L. X. Wang, W. Shi, S. L. Sun, M. Lu. A synergetic application of surface plasmon and field effect to improve Si solar cell performance. Nanotechnology, 27, 145203(2016).

    [21] B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, W. M. M. Kessels. Silicon surface passivation by atomic layer deposited Al2O3. J. Appl. Phys., 104, 044903(2008).

    [22] B. Hoex, J. Gielis, M. Van de Sanden, W. Kessels. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3. J. Appl. Phys., 104, 113703(2008).

    [23] J. R. Chen, D. C. Wang, H. C. Hao, M. Lu. Achieving high brightness of silicon nanocrystal light-emitting device with a field-effect approach. Appl. Phys. Lett., 104, 061105(2014).

    [24] L. Dong, S. Youkey, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebiam. Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes. J. Appl. Phys., 101, 024320(2007).

    [25] F. Verstraeten, S. Gielen, P. Verstappen, J. Kesters, E. Georgitzikis, J. Raymakers, D. Cheyns, P. Malinowski, M. Daenen, L. Lutsen, K. Vandewal, W. Maes. Near-infrared organic photodetectors based on bay-annulated indigo showing broadband absorption and high detectivities up to 1.1 μm. J. Mater. Chem. C, 6, 11645-11650(2018).

    Tools

    Get Citation

    Copy Citation Text

    Fei Hu, Li Wu, Xiyuan Dai, Shuai Li, Ming Lu, Jian Sun, "Achieving high-responsivity near-infrared detection at room temperature by nano-Schottky junction arrays via a black silicon/platinum contact approach," Photonics Res. 9, 1324 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optoelectronics

    Received: Dec. 17, 2020

    Accepted: Apr. 30, 2021

    Published Online: Jul. 1, 2021

    The Author Email: Ming Lu (minglu55@fudan.edu.cn), Jian Sun (jsun@fudan.edu.cn)

    DOI:10.1364/PRJ.417866

    Topics