Infrared Technology, Volume. 46, Issue 7, 775(2024)
Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s
[1] [1] ZHANG Zhiqiang, WANG Ping, YU Xudong, et al. Research on highprecision infrared thermal imaging temperature measurement technology [J]. Chinese Journal of Scientific Instrument, 2020, 41(5): 10-18.
[2] [2] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. 2018-04-08, [2022-08-12]. https://arxiv.org/abs/1804.02767.
[3] [3] LIU W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]//Computer Vision-ECCV, 2016: 21-37.
[4] [4] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, realtime object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
[5] [5] ZHAO Z Y, YANG X X, ZHOU Y CH, et al. Real-time detection of particleboard surface defects based on improved YOLOV5 target detection[J]. Scientific Reports, 2021, 11(1): 1-15.
[6] [6] WANG J, CHEN Y, GAO M, et al. Improved YOLOv5 network for realtime multi-scale traffic sign detection[J/OL]. arXiv:2112.08782, https://arxiv.org/abs/2112.08782
[7] [7] WEI Yi, LI Xiaofei, LIN Lihui, et al. Causal discovery on discrete data via weighted normalized wasserstein distance[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4911-4923. Doi: 10.1109/TNNLS.2022.3213641
[8] [8] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[9] [9] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[10] [10] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[11] [11] Nawaz Marriam, Nazir Tahira, Baili Jamel, et al. CXray-EffDet: chest disease detection and classification from X-ray images using the efficientdet model[J]. Diagnostics, 2023, 13(2): 248-248.
[12] [12] HAO Hongyun, FANG Peng, DUAN Enze, et al. A dead broiler inspection system for large-scale breeding farms based on deep learning[J]. Agriculture, 2022, 12(8): 1176-1176.
[13] [13] GUO Jipeng. FPGA implementation of real-time object detection algorithm based on YOLOv3 model[D]. Wuhan: Huazhong University of Science and Technology, 2020. DOI:10.27157/d.cnki.ghzku.2020.004780.
[14] [14] Aliyi Salih, Dese Kokeb, Raj Hakkins. Detectio of gastrointestinal tract disorders using deep learning methods from colonoscopy images and videos[J]. Scientific African, 2023, 20: e01628.
[15] [15] WANG Xinyan, YI Zhengyang. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5[J]. Journal of Chinese Agricultural Mechannization, 2023, 44(3): 171-176. DOI: 10.13733/j.jcam.issn.2095-5553.2023.03.024.
[16] [16] XU Zhengjun, ZHANG Qiang, XU Liang. Research on obstacle detection method for working environment of lawn mower robot based on improved YOLOv5[J]. Journal of Optoelectronics Laser, 2023, 34(1): 52-61. DOI:10.16136/j.joel. 2023.01.0216.
[17] [17] DANG Hongshe, DANG Chen, ZHANG Xuande. Traffic sign recognition algorithm based on improved YOLOv5s[J]. Experimental Technology and Management, 2022, 39(9): 97-102. DOI: 10.16791/ j.cnki.sjg.2022. 09.016.
Get Citation
Copy Citation Text
WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology, 2024, 46(7): 775